
Doing good by fighting fraud: Ethical anti-fraud
systems for mobile payments

Zainul Abi Din∗, Hari Venugopalan∗, Henry Lin†, Adam Wushensky†, Steven Liu†, Samuel T. King∗†
∗ University of California, Davis

† Bouncer Technologies

Abstract—App builders commonly use security challenges, a
form of step-up authentication, to add security to their apps.
However, the ethical implications of this type of architecture has
not been studied previously.

In this paper, we present a large-scale measurement study of
running an existing anti-fraud security challenge, Boxer, in real
apps running on mobile devices. We find that although Boxer
does work well overall, it is unable to scan effectively on devices
that run its machine learning models at less than one frame per
second (FPS), blocking users who use inexpensive devices.

With the insights from our study, we design Daredevil, a
new anti-fraud system for scanning payment cards that works
well across the broad range of performance characteristics
and hardware configurations found on modern mobile devices.
Daredevil reduces the number of devices that run at less than
one FPS by an order of magnitude compared to Boxer, providing
a more equitable system for fighting fraud.

In total, we collect data from 5,085,444 real devices spread
across 496 real apps running production software and interacting
with real users.

I. INTRODUCTION

Smartphones and apps are ubiquitous, with billions of daily
users and over 5 million apps available for everything from
dating and travel to payments and food deliveries. Unfortu-
nately, smartphones and apps have also ushered in a new
generation of attacks [7], [11], [37], forcing app builders
to design and implement user-centric security measures, or
challenges, in their apps [35], [6], [30]. Examples of this new
style of verification include Apple’s FaceID where they use
face biometrics to authenticate a user [25], Uber’s credit-card
scanning where they ask users to scan their card to prove that
they possess it [50], [40], Coinbase’s ID verification where
they ask users to scan an ID to prove who they are in the real
world [26], and Lime’s Access program that allows people of
a low socioeconomic status to scan IDs and utility bills to
prove that they qualify for discounted rental fees [28].

Challenges have the potential to skirt the difficult ethical
issues that apps face with security decisions in their apps.
In a typical app, the app will have an algorithm that predicts
whether a user or a transaction is suspicious. These algorithms
could potentially rely on features that unfairly influence its
decision, such as a zip code. To reduce the impact of mistakes
by their algorithms, apps can use user-centric security mea-
sures in lieu of suspending users or blocking transactions. This
technique allows users that the algorithm blocks incorrectly
to verify themselves or their payment methods automatically.

Thus, even if their algorithm has bias [19], challenges provide
an avenue for making sure that everyone can access the app.

Unfortunately, challenges open a new set of ethical co-
nundrums. Apps that want to respect end-user privacy and
run their challenges via compute intensive machine learning
models on the device will have to cope with the 1-4 orders of
magnitude difference in capabilities on the devices that they
will see in practice (Section III). Apps that opt for predictable
ML performance by streaming data to a server and running
their ML there will have to deal with a 1000x difference
in bandwidth between 3G and 5G networks [52], and the
people who use it may have to pay for that bandwidth directly.
Security challenges must deal with these subtleties of practical
deployments or else they will block users unethically.

The most dangerous aspect of the ethical implications inher-
ent with security challenges is that they solve an app’s business
problem but have the potential to still make compromises on
users of a low socioeconomic status. One example of this
tradeoff is with Lime’s Access program [28]. Lime allows
users from low-income households to get reduced rates with
Lime rentals by proving that they qualify for the program by
scanning welfare documents or utility bills. These documents
contain personal information that typical Lime users do not
have to provide, and Lime does not process these documents
themselves, they use a third party for this service [27]. Just
to be clear, we, as proponents of this program applaud Lime
for implementing it, but Lime forces users to give up privacy
to qualify. It would be better if they could prove that these
documents are genuine without needing to send sensitive
information to a third-party server.

A second example is Boxer [9], a system presented at
Usenix Security 2020 for scanning credit cards to prove that
the user possesses the genuine physical card. Boxer uses client-
side machine learning to verify the credit card. However,
based on our measurement study of Boxer’s open-source card
scanner (Section III), Boxer fails on 68.13% of Android
devices that run its ML at less than one FPS. Slower ML
inference corresponds to lower frame rates and thus, fewer
inputs that the system processes for verification. Like Lime’s
Access program, apps that use Boxer solve their business
problem – only 4.19% of the total devices that we measure are
Android devices that run Boxer’s ML at less than one FPS. By
using Boxer, apps recover most of the people that their security
systems flag incorrectly. However, by blocking devices that are
unable to run their ML models fast enough, they run the risk

of denying access to at-risk populations simply because they
have an inexpensive device.

The inability to run challenges on resource-constrained
devices introduces a new bias that the existing formulations
of machine learning fairness [29], [10], [19], [31], [5] are ill-
equipped to solve. Existing formulations of machine learning
fairness modify either the decision engine or the feature set
corresponding to an individual of a protected group to ensure
that protected attributes (e.g., race) do not affect the outcome.
However, being unable to run models on resource-constrained
devices robs the decision engine of the inputs it needs to
make a decision in the first place. Although the decision
engine could randomly pass individuals whose devices are
low end or randomly block otherwise good users to provide a
notion of fairness, both degrade the performance of the overall
system since they weaken their ability to distinguish between
legitimate and fraudulent users. No algorithmic or theoretical
notion of fairness can account for this lack of data.

Our position is that ethical security challenges should run
client side, support complex machine learning (if needed), and
run effectively on resource-constrained devices. In this paper,
we present Daredevil, a system for running complex client-
side ML models for security on the full range of devices
one is likely to see in practice today. Daredevil’s design
includes decomposing machine learning tasks for redundancy
and efficiency, streamlining individual tasks for improved
performance, and exploiting task and data parallelism.

We demonstrate Daredevil by designing and implementing
a new credit card scanning and verification system. Card
scanners use complex machine learning models and hundreds
of apps use them in practice [9], which make them a good
candidate for Daredevil. We deploy Daredevil to real apps
and demonstrate how it provides access to a wide range of
devices. Through our deployment, we run Daredevil on over
1,580,260 devices from real users and show how Daredevil
both enables resource-constrained hardware to run security
ML models effectively, and it improves the end-to-end success
rates on well-provisioned hardware with support for fast ML
models.

Our contributions are:

• We present the first large-scale in-field study of on-device
deep learning for security. Our measurements focus on
Boxer, a system for scanning credit cards, where we
demonstrate that due to the degree of hardware diversity,
deep-learning-based security challenges have the poten-
tial of being unethical despite solving the apps’ business
problem.

• We uncover insights from our measurement study such
as critical reasons for failure cases, key system metrics,
and mitigation strategies that developers should consider
when designing a client-side machine learning pipeline.

• Equipped with the insights from our measurement study,
we design, implement, and deploy Daredevil, which em-
powers card scanning and verification to run on a wide
range of devices.

II. BACKGROUND: CARD-NOT-PRESENT CREDIT CARD
FRAUD AND CARD SCANNING

Fraudsters acquire stolen credit card information and use
it to make purchases online, without possessing the actual
physical card. This is known as card-not-present credit card
fraud. When the real owner of the card notices a suspicious
charge on their credit card statement, they report it to the credit
card company. Upon investigating the transaction, if the credit
card company finds the transaction to be fraudulent, they will
issue a chargeback to the app. The app will have to pay back
the money to the real owner of the card, and an additional
dispute fee to the credit card company [48]. This protects the
owner of the credit card and puts the responsibility of curbing
card-not-present credit card fraud on the app.

Recently, researchers propose Boxer [9], a mobile SDK and
server that app builders integrate with apps to prevent card-
not-present credit card fraud. Boxer shows how to scan the
number side of a card and verify that it is genuine. Boxer casts
card verification as a machine learning problem that it divides
into three main parts: optical character recognition (OCR),
fake media detection (implemented via screen detection in
their paper), and card tampering detection (called a Bank
Identification Number or BIN consistency check in their paper).
OCR pulls the card number, expiration, and legal name off
the card. Screen detection detects when a user scans a card
from a screen instead of using a physical card. Card tampering
detection finds prominent objects on the card, like the bank
logo, and correlates this information with the OCR prediction
to confirm that these objects are consistent with the type of
card that they expect. For instance, if OCR detects a BIN (first
six digits of the card number) of a Chase Visa payment card
but the card tampering detection detects a Bank of America
logo or Mastercard logo, Boxer flags this scan as fraudulent.

However, Boxer falls short in the following ways: First,
OCR, as their first line of defense, stops the vast majority of
fraudsters as per their evaluation. However, as we describe
in our measurement study (Section III), Boxer’s OCR under
performs on low-end devices. Second, Boxer’s fraud checks
only scan the number side of the card. However, newer card
designs in the wild contain visual design elements on either
side of the card, so by scanning only the number side of the
card Boxer misses out on key information. Third, Boxer only
flags cards scanned off screens and not other fake media.

In the remainder of the paper, we first describe our measure-
ment study of Boxer (Section III). We then describe the design
of Daredevil, a new credit card scanning and verification
system to improve upon Boxer (Sections IV, V). This is
followed by a detailed evaluation of Daredevil (Section VI).

III. MEASUREMENT STUDY

In this section, we present the first large-scale measurement
study of a security challenge using deep learning on mobile
devices. We study the practical characteristics and limitations
of credit card scanning using real apps running on end-user
devices with real people and credit cards, and all the idiosyn-
crasies inherent in large-scale software with live deployments.

We believe this study is the first of its kind and has
implications for deep learning engineers, app developers, and
hardware vendors. The closest to our study in terms of scale
is presented by Ignatov et. al [24], however, their study is
limited to only 10,000 Android devices and runs pre-defined
images through pre-trained models loaded on each device to
benchmark the hardware.

Ours is an in-field correlation study and represents a realistic
usage scenario for end-users since we benchmark the usage of
a deep learning driven application where the user, the phone
sensor, image processing, ambient lighting, device surface
temperature, the compute capability of the device and other
production variables determine the performance of the system.
In our study, we protect end-user privacy by limiting the
amount and nature of the statistics that we record, the metrics
have enough fidelity that they inform our end-to-end design
(Section V), resulting in significant improvements in the wild
(Section VI).

Our university’s IRB board reviewed our study and ruled it
to be exempt from IRB.

A. Measurement study goals and questions

Our high-level goal is to understand the practical per-
formance and limitations of camera-based mobile security
challenges in real-world conditions. We perform our study
using Boxer, a widely deployed credit card scanning system
and measure its success rate as the primary metric for success.
To understand the performance and limitations, we focus our
correlation study on three primary questions.

How does the speed of ML predictions influence end-to-end
metrics for success? The research community and industry
have put a heavy emphasis on performance for ML predictions
through machine learning models designed specifically for
mobile devices [21], [23], [45], [20] and hardware support
for fast inference [3], [16]. We measure the impact of these
efforts on high-level metrics for success.

How widely do the ML capabilities on modern phones vary
in the field? We measure the range of ML capabilities one
is likely to see in practice. By understanding the range of
capabilities, one can anticipate the performance differences for
security challenges in realistic settings. Also, we quantify the
number of devices that are unable to run Boxer ML effectively,
which for a security check blocks the user.

How long are people willing to wait when they try to
scan documents with their phone? As there are many forms
of scanning documents that apps use for security checks,
understanding how long people are willing to wait as they
try to scan informs the overall design of a security check.
Security check designers will know how long they have to
capture relevant information before someone gives up.

B. Measurement Platform

To measure Boxer’s performance, we instrumented Boxer’s
open-source SDK and made it available to third-party app
developers. We then measured the success rate for the users

of their live production apps. We present results from anony-
mous statistics sent by 496 apps that deployed and ran the
instrumented library from July 2019 to late November 2020.

C. Testbed

Our instrumented Android SDK ran on a total of 329,272
Android devices spanning a total of 611 Android device
types. This included 168,658 Samsung devices spanning 281
Samsung device types, 49,329 Huawei devices spanning 91
Huawei device types, 80,351 Xiaomi devices spanning 64
Xiaomi device types, 5,464 LG devices spanning 63 LG device
types, 2,939 Google devices spanning 11 Google device types,
2,501 Motorola devices spanning 27 Motorola device types,
2,560 OnePlus devices spanning 18 OnePlus device types
and tail of 17,470 devices, spanning 56 device types and
23 vendors. Our instrumented iOS SDK ran on a total of
3,175,912 iOS devices spanning a total of 27 iOS device types.

D. Task

Our instrumented SDK prompts users to scan their credit
cards. When invoked, it starts the camera and prompts users
to place their card in the center of the viewport. The OCR
processes the frames obtained from the camera and attempts
to extract the card number and the expiry from the card.
Upon success, the card number and the expiry are displayed to
the user and the SDK sends the scan statistics to our server.
In case, the OCR is unable to extract the number, the flow
doesn’t time-out, instead we let the user cancel the scan which
provides us an additional user-level metric that can guide a
new design.

Boxer uses a two-stage OCR similar to Deep Text Spot-
ter [8], consisting of a detection phase to detect groups of
digits in credit card images and a recognition phase to extract
individual digits from these groups.

Both models use a modified version of MobileNet [21],
where the detection model occupies 1.75MB and the recogni-
tion model occupies 1.19MB on disk.

The detection model processes an input image of size
480x302x3 and generates a total of 1,734 proposals. It has
a total of 910,379 parameters of which 901,379 are trainable.
There are 16 2D convolution blocks and 10 Depthwise convo-
lution blocks, each followed by a batch-norm and an activation
layer.

The recognition model processes input images of size
36x80x3, each corresponding to the proposal generated by the
detection model and generates a feature map of 17x11 for
each proposal. It has a total of 618,540 parameters of which
611,754 are trainable. There are 14 2D convolution blocks and
8 Depthwise convolution blocks, each followed by a batch-
norm and an activation layer.

For inference, the iOS SDK uses the vendor specific
CoreML which runs the models on the CPU, the GPU and
the Neural engine depending upon the availability and usage
at any time. The Android SDK uses a generic interpreter
TFlite, where the inference primarily runs on the CPU. Boxer’s
models are quantized using 16-bit floating point weights.

Frame Rate (Frames Per Second)

Su
cc

es
s

ra
te

(%
)

0

25

50

75

10
0

0 5 10 15 20

android ios

Fig. 1: Boxer OCR success rate vs frame rate on Android and
iOS. Each point is the average success rate and frame rate
for a specific device type. This figure shows that when using
the same machine learning model, end-to-end success rates
drop off as the frame rate declines. We also see the same
model and system architecture exhibit different performance
characteristics on Android and iOS.

Android FPS Count Success rate
< 1 FPS 146,890 (44.61%) 31.87%
1−2 FPS 97,798 (29.70%) 49.97%
>= 2 FPS 84,584 (25.68%) 68.72%

Fig. 2: Success rates for Android devices running Boxer by
the frame rate. We see that a significant portion of devices
operate at frame rates less than 1 FPS.

E. Results

1) Key Performance Metrics: Success rate: We define
success rate as the ratio of the number of users where the
scanner successfully extracted the card number to the total
number of users using the scanner.

Frame rate: We define the frame rate as the number
of frames from the camera processed by the OCR pipeline
(detection and recognition) per second.

Figure 1 shows the variation in success rate against the
frame rate for different devices. We omit iPhone 6 and below
devices from our deployment since Boxer does not support
them.

Data from Figure 1 and Figure 2 suggests:
• Both the frame rate and the success rate are higher on iOS

than on Android when using the same machine learning
models and same system architecture.

• Boxer is ineffective on Android devices when the frame
rate is less than 1 FPS. These devices make up 44.61% of
the Android devices in our study and achieve a success
rate of 31.87% compared to 49.97% for devices that run
at 1-2 FPS and 68.72% for devices that run at 2 FPS or
higher.

Platform Count Avg Success Avg Avg
Rate FPS Duration (s)

Android 329,272 46.72% 1.303 14.45
iOS 3,175,912 88.60% 10.00 10.02

Fig. 3: Aggregate results of Boxer on Android and iOS.

Platform Count Avg Avg
FPS Duration (s)

Android 175,435 1.00 16.20
iOS 361,924 9.28 20.73

Fig. 4: Failure cases of Boxer on Android and iOS.

Figure 3 shows aggregate results for iOS and Android.
While the success rate for iOS is 88.60%, the success rate
for Android is much lower at 46.72%.

2) Further analysis of failure cases: We measure how long
users are willing to wait to scan their cards by measuring how
long people scan for when they are unsuccessful in scanning
their card. Measuring the time that people are willing to wait
while scanning informs our decisions when designing the
system and trading off scan times vs accuracy and fraud signal
fidelity.

From our real-world deployment of 3,505,184 scans, we
observed 537,359 failed attempts where users gave up on
trying to scan their card. We aggregate the duration of these
scans on iOS and Android to report that Android users waited
an average of 16.20s and iOS users waited an average of
20.73s to scan their cards before giving up (Figure 4).

F. Context for the results

For its fraud challenge, Boxer uses OCR to verify the card
number that the app has on record for any user. Thus, anyone
who is unable to scan their number will be unable to pass
the fraud challenge. Additionally, OCR is the first model in
the Boxer pipeline and is used to extract data like the first
six digits (BIN), which is then correlated with other features
like the credit card design to determine fraud. However, if the
first model in the pipeline fails to run, the device is implicitly
denied the service.

Boxer solves the business problem that its designers in-
tended to solve, since it runs OCR successfully on 84.7% of
the devices overall. However, the success rate on devices that
run at a rate of less than 1 FPS is mere 31.87%, and these
devices make up 44.61% of the Android devices we measure,
introducing a potential ethical conundrum by blocking users
solely because they have an inexpensive device.

IV. OVERVIEW

In this paper, we introduce Daredevil, a new system that we
design and implement to realize ethical deep learning powered
user-centric security challenges, with the goal of providing
equal access to all users. Although we built Daredevil to
prevent card-not-present credit card fraud, the insights gained

����2SHQ�FDPHUD
FDUG�GHWHFWLRQ���
2&5�UXQQLQJ

����&HQWHUHG�FDUG�
LPDJHV�FROOHFWHG�
IRU�LQIHUHQFH

����&ROOHFW�2&5�
UHVXOWV���YRWLQJ�IRU�
HUURU�FRUUHFWLRQ

����0RUH�IUDXG�
PRGHOV

���V�RQ�DYHUDJH ���V 8S�WR��V

0DLQ�ORRS &RPSOHWLRQ�ORRS

����$3,�FDOO

�V����V

Fig. 5: Daredevil scanning one side of a card from a user’s perspective.

from Daredevil can also be applied to design other end-user
security challenges.

To provide equal access, Daredevil must be fast, even on
resource-constrained devices that lack hardware acceleration
for machine learning, Daredevil must respect end user privacy,
and Daredevil must be accurate to avoid incorrectly flagging
otherwise good users as being fraudulent.

Our work on Daredevil builds off recent work from Din
et al. [9] that shows how to scan the number side of a card
and verify that it is genuine using a system called Boxer, as
described in Section II.

We demonstrate the design of an ethical fraud challenge by
improving Boxer in the following ways:

• We design a new fast and efficient OCR that also runs
well on resource-constrained devices.

• We propose a machine learning pipeline that combines
the different models to provide efficiency and redundancy.

• We introduce a new card detection model that operates in
concert with card tampering detection to scan both sides
of the card.

A. Threat model

In our threat model, our goal is to reduce financial fraud
while ensuring that all users can pass our challenge. Our focus
is on challenges that apps can use to verify that people possess
a genuine credit card.

We assume that the attacker has stolen credit card creden-
tials (e.g., the card number and billing ZIP code), but does not
possess the real credit card.

Our machine learning models run client side, where Dare-
devil processes credit card images on the device before passing
a distilled summary of the machine learning output to our
server, where we make the ultimate decision about if a scan
is genuine. As our models run client side, we are susceptible
to attackers who tamper with the app, the video stream, or
our machine learning models. Although we do have some
measures in place to assess the integrity of our client-side soft-
ware (e.g., DeviceCheck on iOS and SafetyNet on Android),
we recognize that this type of assurance is still an ongoing
arms race between app builders, device manufacturers, and
attackers. Our design favors end-user privacy even though it
does open us up to client-side attacks.

B. Architecture

To scan cards and verify that they are genuine, Daredevil
asks users to scan the front of their card and the back. This
makes Daredevil flexible to verify a wide range of card designs
where meaningful information can be on either side of the
card. Scanning both sides also provides more data for us to
detect signs of tampering than if we scan only a single side.
Our checks inspect individual card sides to ensure that they
are genuine, as well as combining information from both sides
to make sure that it is consistent.

However, scanning both sides of the card complicates the
machine learning aspects of verifying a card. First, credit cards
are free to print design elements on either side. Second, users
(and some of the authors) are unaware of which side of the
card is the front versus the back. Therefore, Daredevil must
be flexible enough to pull out the appropriate information to

LIFO buffer

Main loop models

Priority buffer

OCR
Extract number

Card detect
Centered cards

Completion loop
models

Card tamper detect
Forged cards

Fake media detect
Cards rendered on fake media

Fig. 6: Machine learning pipeline for client-side models.

detect fraud dynamically and adapt automatically to scan the
appropriate side of the card for each scan. The net result is
that to verify cards Daredevil must run more machine learning
models than it would if it were just scanning a single side of
the card.

Figure 5 shows this overall process from a user’s perspec-
tive. First, the user (1) opens the flow, which starts the camera.
Then (2) when they put the card in the center of the viewport,
we update the user interface to give them feedback. In parallel,
(3) the card detection and the OCR models run and we display
the details that the OCR extracts from the card. After the
first successful OCR prediction we continue running the card
detection and OCR models for 1.5s and collect additional
predictions about the OCR details to vote and correct any
mispredictions. After the error correction process completes,
(4) we run the fake media detection and card tampering
detection models on a subset of the images that we process
for up to 1s, before (5) making an API call to our server to
judge if the scan included a genuine physical card. This API
call includes the output of our client-side machine learning
models and our server-side logic implements rules to make a
final overall decision about the validity of a scan.

Figure 6 shows our client-side machine learning pipeline
for processing images (frames) from the camera. This pipeline
uses two different producer/consumer modules and divides the
computation up into a main loop and a completion loop. The
main loop runs on images in real time as the camera extracts
images, and the completion loop runs after the main loop
finishes but before making the final API call.

In this flow we show the scanning process for a single side
of the card, but in Daredevil we scan both sides of the card
using the same basic process before making the final API call.
We introduce a card detection model that detects the side of
the card, which we use as the basis for our two-side scan. See
Section V-D for more details.

V. DESIGN

A. Challenge: Where to run verification?

Card verification can either run on the client or on the
server. Server-side verification moves compute intensive ma-

chine learning inference away from the edge. This server-
centric architecture ensures verification can run on all phones,
regardless of their compute capabilities while also simplifying
the role of the client to merely relay data to the server.
However, server-side verification puts higher strain on network
bandwidth and latency, with the need to transmit frames from
the camera to the server, resulting in delays in verification.

Server-side verification also disregards end-user privacy.
With server-side verification, the app sends sensitive user
information, such as card images, to the server, thereby
introducing potential avenues for data breach.

Running verification on the mobile client involves running
compute intensive machine-learning inference on the client
and only sending high-level features to the server. This client-
first architecture puts less strain on the network and can
process more frames faster by virtue of running closer to the
camera. Importantly, client-side verification is more respectful
of end-user privacy since it avoids sending sensitive card
images to the server.

B. Solution: Run verification on the client

We believe that there are more good users than fraudsters
and respecting the good user’s privacy should be the foremost
concern for anyone attempting to combat fraud. Additionally,
one way fraudsters source stolen card information is through
data breaches, and we strive to minimize these avenues. Thus,
Daredevil chooses to run its verification on the client. Dare-
devil’s system design and algorithmic improvements ensure
the running of uniform verification on resource-constrained
and well-provisioned devices across different platforms.

C. Challenge: How to ensure high verification accuracy on a
mobile phone?

The input to our models is an image or a video stream of a
user holding a card. Changes in illumination, varying camera
quality, orientation of the payment card, wear patterns on the
card, and so on add to the stochasticity of the inputs, which
makes it difficult to ensure high accuracy. However, since we
use this input to verify or block a user, ensuring high accuracy
is critical to provide uniform verification.

A common solution to ensure high accuracy in machine
learning is to increase the model size. However, apps are hes-
itant to increase the size of their binary [44], mobile networks
can be slow and content distribution networks are expensive
(a 5MB machine learning model downloaded 50 million times
in a month costs north of $30k / month) complicating model
downloads in the background. All of which puts pressure on
client-side machine learning to keep model sizes down while
still providing fast and accurate predictions.

D. Solution: Decompose verification to sub-tasks for improved
efficiency and redundancy

We decompose card verification into multiple tasks, with
each task having its own independent machine learning model.
Decomposition of the verification process into sub-tasks keeps
each sub-task efficient while also providing redundancy across

tasks for improved accuracy. Decomposition also enables us
to iteratively refine models for each individual task until the
models reach an acceptable level of accuracy.

Daredevil decomposes verification into four distinct sub-
tasks: OCR, card detection, fake media detection, and card
tampering detection. OCR scans the number side of the card
and extracts the card number, card detection detects frames
where the user centers the card in the viewport and detects the
side of the card that the user scans (number or non-number
side), and fake media detection checks both sides of the card
to detect cards scanned off fake media such as device screens,
paper, cardboard etc.

Card tampering detection also scans both sides of the
card to detect signs of tampering and inconsistencies. We
scan both sides since newer card designs have meaningful
information printed on both sides. For instance, newer Wells
Fargo payment cards contain the bank and payment network
logos on one side and the card number and expiry on the other
side. In this case, if the card tampering detection detects a
Wells Fargo card number on one side and detects a conflicting
bank logo on the same or opposite side, Daredevil flags the
scan as fake.

Decomposition leads to higher accuracy in two ways. First,
our decomposition makes our overall system more efficient,
allocating limited ML resources towards the images that are
most likely to generate meaningful signals (Section V-D1).
Second, our decomposition provides redundant signals to
increase the confidence of the predictions that Daredevil makes
(Section V-D2).

1) Efficiency with decomposition: If we pass every frame
coming from the camera through all our machine learning
models, then we waste computation. For example, if there is
an image without a card in it, then running the fake media
detection model or the card tampering detection model on that
image is wasteful because there isn’t even a card in the image,
and it won’t provide meaningful results.

Instead, to make our overall ML pipeline more efficient,
we divide computation up into a main loop that runs on all
frames in real-time, and a completion loop that defers running
of models and operates on only a subset of the frames that
we believe are most likely to have relevant fraud signals.
Logic in the main loop dictates which frames it passes on
to the completion loop, which in Daredevil are any images
that have centered cards in them. Figure 6 shows Daredevil’s
decomposition.

At the heart of our design is the card detector model. The
card detector model is a 3-class image classifier that we train
to detect a centered image of the number side or a centered
image of the non-number side of a card. The card detector
also has a third class, called the background class, to filter out
frames that contain off-center cards or no cards at all.

We execute the card detector and OCR models on the main
loop. The reason that we run these models on the main loop
is because they both produce user-visible outputs (Figure 5).
The card detection model highlights the corner of our viewport
when it detects a centered card and our OCR model displays

the recognized card number and expiration date using an
animation as it captures them. Thus, these models must run
in the main loop to process frames in real-time and display
their results to the user. We finish the main loop by using the
results from the card detection model to determine when the
user scans either the number side or non-number side of a
card for 1.5 seconds.

We execute the fake media detection and card tampering
detection models on the completion loop. These models only
produce a result that our system uses to detect fake cards
via an API call, so we defer execution until after the main
loop finishes and only run them on a subset of frames (up
to six in our current system) identified by the card detector
model that are likely to produce evidence of fake cards.
Our decomposition keeps the system efficient by having the
completion loop save computation by only processing frames
with centered cards.

2) Redundancy with decomposition: Daredevil uses differ-
ent forms of redundancy for each of its models to provide
high confidence in the accuracy of its decisions. Some models
have a built-in validation signal for redundancy, while others
require external validation signals for redundancy.

More concretely, OCR has redundancy built into its design
from the Luhn algorithm [18]. The Luhn algorithm is a
checksum used to validate credit card numbers. Thus, we
validate OCR predictions by making sure that they satisfy the
Luhn checksum.

In contrast, our card tampering detection model detects
prominent objects on cards (e.g., the Visa symbol) and our
fake media detection model detects cards scanned off fake
media and do not contain a built-in validation signal. Thus, we
use the predictions of the card detection model and OCR to
provide redundancy. Correlating predictions between models
reinforces their decisions. For example, predictions of seeing
a card by the card detection model, and detecting the presence
of a Visa symbol by the card tampering detection model
reinforce each other. For the number side, these predictions
also reinforce OCR and in turn OCR reinforces them.

Additionally, OCR, card tampering detection, and fake
media detection benefit from voting on predictions across the
frames they process for redundancy. For example, if our fake
media detection model processes five frames and predicts the
presence of a computer screen on three of them, and no screen
on the remaining two, its final decision is that a screen is
present.

Figure 7 summarizes the different forms of redundancy we
use with each model.

Redundancy is the most important lesson learned from
our implementation. Even if a model achieves an accuracy
of 100% on a benchmark validation dataset, it can still fall
short for a practical system. Instead, one needs to supplement
these predictions with additional data via voting and validation
signals. To cope with the uncertainty inherent in real deploy-
ments and to handle active attackers, we need these forms of
redundancy.

Task Redundancy used Redundancy
provided

Card
detection None Centered and focused

card present

OCR Luhn + voting Card number and
location

Card
tampering

Voting + validation
from card detection

and OCR
None

Fake
media

detection

Voting + validation
from card detection None

Fig. 7: Task-level redundancy in Daredevil.

E. Challenge: How to account for resource-constrained mo-
bile phones?

Owing to differences in sensor quality and compute ca-
pabilities, there is a stark difference in the performance of
running image processing machine learning tasks on resource-
constrained and well-provisioned phones. At best, the result
of the difference in this performance inconveniences users by
making them wait longer to verify their cards, and at worst,
prevents users from verifying themselves. In either case, fraud
systems penalize users attempting to verify themselves simply
for not possessing a well-provisioned phone.

From our measurement study (Section III), we can see
first-hand the stark differences in running the same machine
learning models on well-provisioned and resource-constrained
devices in a production setting. Even though machine learning
inference is expected to improve with streamlined acceler-
ated hardware support (GPUs, Neural Engine) on iOS which
will bridge the gap between resource-constrained and well-
provisioned iPhones, it continues to be a problem on Android
phones due to inherent hardware heterogeneity, with over 2000
SoCs in distribution, making optimizing for each of them
difficult.

Thus, to have uniform verification on all devices irrespective
of hardware capabilities, there is a need for software enhance-
ments for efficient machine learning inference.

F. Solution: Refine machine learning models and improve
system design to provide faster effective frame rates

Our solution to account for resource-constrained phones
consists of algorithmic machine learning improvements for
faster inference times and refined system design for higher
utilization of the hardware.

1) Improvements in machine learning: The following two
key principles inform our machine learning re-design:

(1) Optimize machine learning for resource-constrained
phones: Machine learning optimization for resource-
constrained phones translates to well-provisioned phones as
well but the reverse is not true. Well provisioned phones
often employ hardware acceleration optimized for efficient
machine learning inference. Having this hardware support
means that we can increase the capacity of machine learning

models either by adding more parameters or by breaking a
problem into sub-problems each executed with a separate
machine learning model. This has a sub-linear slow-down in
performance, leading to a better speed versus accuracy trade
off. However, resource-constrained phones do not possess
this luxury and adding parameters to the model has at least
a linear slow-down in performance (it was quadratic in our
case).

We thus create a unified model for OCR and reduce the
number of parameters by half. This leads to a quadratic speed
up on resource-constrained phones and close to a linear speed
up on well-provisioned phones as well. The new model also
occupies half the disk and memory space of the original model,
as an added benefit to memory constrained devices.

In addition to the algorithmic improvements, using a single
model avoids expensive and complex processing to convert
the output of one model into the input of another, leading
to a more efficient implementation with less code needed to
interpret the results.

(2) Optimize machine learning for the common case: Fol-
lowing our previous design principle of using a single model
for OCR implies that we are operating at half the machine
learning capacity as before leading to an inevitable tradeoff
between accuracy and speed. We observe that with a unified
model for OCR we need to add complex auxiliary layers at
multiple stages in the model to scan all payment card designs.
However, these auxiliary layers add parameters to the model as
well as increase the post processing complexity making them
prohibitively slow on resource-constrained devices.

We thus add native support in the model for the most
common designs and employ system design strategies to ac-
count for less common card designs. This ensures our machine
learning inference is efficient for the common case employing
gated execution of more complex pipeline for less common
cases.

OCR model design: With the above two design principles,
we design and implement a new OCR model to work in a
single pass. Our new model draws on ideas from existing work
on Faster-RCNN [43], SSD [34] and Yolo [42].

We replace Boxer’s detection and recognition stages, which
were implemented using two separate models, with a single
network. The network reasons globally about the entire image
resulting in end-to-end training and faster inference. We im-
plement the model as a fully convolutional MobileNetV2 [45]
with auxiliary features for detection and recognition unifying
separate components of the detection and recognition into a
single network. We append these features to the network at
different layers to account for multi-sized feature maps, like
SSD [34]. This flexibility gives us the ability to operate on
credit cards with varied font sizes.

Our OCR model operates on an input image size of 600x375
pixels, which is close to the aspect ratio of a credit card. As
with any CNN, the feature map shrinks in size and expands in
the depth dimension as the network processes the image. We
add auxiliary layers to the network at two places, one where
the feature map size is 38x24, and another where the feature

map size is 19x12. We find adding multi-layer predictions at
these two layers captures the vast majority of credit card fonts.
The activations corresponding to feature map of size 38x24
are useful for small and flat font payment cards while the
activations corresponding to the feature map size 19x12 are
used for embossed cards that have bigger fonts.

At the output feature maps, each activation is responsible for
detecting a digit. To extract the card number from an image,
we need to localize and recognize individual digits. Knowing
the location and value of each digit in the input image aids
in post processing to remove false positives. Accordingly,
each activation in the two output feature maps is mapped
to a regression layer (for localization) and a classification
layer (for recognition). We implement the regression layer
with anchor boxes like Faster-RCNN [43], where the possible
output locations are captured with multi-aspect-ratio bounding
boxes. Unlike Faster-RCNN which uses nine anchor boxes
per location, we only use three, since we find this to be
sufficient for OCR. We also fine-tune our bounding box scales
for OCR; however, we defer these details to the open source
code we make available. To each output feature map activation,
we append a regression layer that consists of mapping each
input activation to 12 output activations, since we output three
bounding box proposals each containing four coordinates.
Each of these proposals (bounding boxes) can contain a
digit that the classification layer detects. The classification
layer maps each input activation to 33 output activations, 11
activations (background, 0 to 9) per bounding box.

During inference we apply standard post processing tech-
niques like non-max suppression [12] and heuristic based
refining that is relevant to different credit card designs.

Our OCR model has difficulty in localizing small objects
precisely, much like Yolo [42] and SSD [34]. Since each
output activation is responsible for detecting a single digit, if
the corresponding receptive field of a single activation spans
multiple digits, the model will only be able to detect a single
digit. In our experience, we found one credit card design
(Brex credit cards) that the model struggles to perform OCR
on. One way to fix this corner case is to make the input
feature map size bigger or add auxiliary layers earlier in the
network where the feature map sizes are bigger. However,
this adds more computation to the machine learning inference
effectively decreasing the frame rates on resource-constrained
devices.

To successfully perform OCR on payment cards with tiny
fonts, we first detect the ratio of the size of an individual digit
compared to the size of the input feature map. If it is below our
empirically determined threshold, we pass a zoomed in image
of the input through the machine learning pipeline effectively
mapping a card with small font to one with a relatively bigger
font that the model supports natively. This flow adds latency to
our overall inference pipeline; however, Daredevil only needs
to trigger it sparingly.

We use 1 million real and synthetic card images to train our
OCR model. However, we find that, on our internal benchmark
datasets, this model is unable to reproduce Boxer OCR’s

precision and recall, owing to the overall reduced number
of parameters. To account for this reduction, we generate an
additional 1.5 million synthetic credit card images. Ultimately,
we train the OCR model with 2.5 million real and synthetic
card images to match Boxer OCR’s baseline on our benchmark
datasets.

2) Improvements in system design: To further increase
the frame rate, we refine our system design to use a pro-
ducer/consumer pipeline with a bounded buffer. We collect
multiple frames from the camera and run machine learning
inference on all of them in parallel. Since running machine
learning inference takes time, this design ensures that fetching
frames from the camera is not blocked, making the entire
system parallel from reading camera frames to completing
machine learning inference.

We find that buffering images and running the same in-
ference in parallel leads to speedups of up to 117% for our
workload (see Appendix B for our results). Processing more
frames is critical for improving the end-to-end success rate
for complex machine learning problems that demand high
accuracy as concluded in our measurement study (see Section
III).

VI. EVALUATION

In our evaluation, we answer the following questions:

• Does Daredevil bridge the gap between low- and high-
end devices?

• Does Daredevil prevent fraud in the wild while remaining
ethical?

• What is Daredevil’s false positive rate when scanning real
cards and running anti-fraud models?

• Does our use of redundancy improve overall accuracy?
• What is the impact of back-end networks and data aug-

mentation on overall success rates?

A. Does Daredevil bridge the gap between low- and high-end
devices?

In this section, we measure Daredevil’s performance for its
most complex and carefully designed machine learning model:
OCR. Although OCR is a critical part of our fraud system (see
Section VI-B for real-world results of using Daredevil to stop
fraud), in this experiment we use OCR to help people add
credit and debit cards to an app more effectively by scanning
instead of typing in numbers.

1) Measurement Platform: To measure Daredevil’s perfor-
mance, we perform a correlation study by making it available
to third-party app developers and measuring the success rate
for the users of their live production apps. For Daredevil
Android SDK, we present results from anonymous statistics
sent by 70 apps that deploy our library from December 2019
to late November 2020. For Daredevil iOS SDK, we present
results from anonymous statistics sent by 44 apps that deploy
our library from late July 2020 to late November 2020.

Model Size # # 2D # Depth-wise
params. Conv(s) Conv(s)

Daredevil 1.65MB 861,242 39 25
Boxer 2.94MB 1,528,919 30 18

Fig. 8: Comparison of model parameters and architecture of
Daredevil (44% fewer parameters) and Boxer. Developers us-
ing architectures similar to these models for other applications
can expect to see similar frame rates.

2) Testbed: Daredevil Android SDK ran on a total of
477,594 Android devices spanning a total of 722 Android de-
vice types. This included 328,600 Samsung devices spanning
302 Samsung device types, 42,619 Huawei devices spanning
111 Huawei device types, 6,876 Xiaomi devices spanning 38
Xiaomi device types, 22,952 LG devices spanning 78 LG
device types, 31,699 Google devices spanning 17 Google
device types, 18,407 Motorola devices spanning 58 Motorola
device types, 8,751 OnePlus devices spanning 29 OnePlus
device types and tail of 17,690 devices, spanning 89 device
types and 28 vendors. Daredevil iOS SDK ran on a total of
1,102,666 iOS devices spanning a total of 28 iOS device types.

3) Task: As before, Daredevil prompts users to scan their
credit cards. The task, UI and the control flow is identical to
the measurement study (Section III-D)

Daredevil consists of a single-stage OCR where both detec-
tion and recognition happen in a single pass. The input image
from the camera is processed and sent to the OCR model
which outputs a string of digits.

Daredevil uses a fully convolutional MobileNetV2 [45] with
auxiliary features for detection and recognition for OCR and
occupies 1.65MB on disk. The OCR model processes an input
image of size 600x375 and generates 51,300 output values
which are used to detect and localize the information for
extraction. It has a total of 861,242 parameters of which
830,362 are trainable. Daredevil uses 44% fewer parameters
than Boxer. Figure 8 shows a comparison of the model
parameters between Boxer and Daredevil.

We use the same inference engines (CoreML for iOS and
TFLite CPU for Android) for Daredevil as Boxer, detailed in
our measurement study Section III. Like Boxer, we quantize
all our models using 16-bit floating point weights.

4) Results- Key Performance Metrics: As before, we use
the same definitions for frame rate and success rate for our
performance metrics as in Section III.

We show the impact that the new Daredevil OCR model
(Section V-F1) has on the overall scanning success rate. Our
informal goal with Daredevil was to improve the success
rates on Android to match Boxer iOS. Daredevil uses algo-
rithmic machine learning improvements, empirical accuracy-
preserving optimizations, high fidelity synthetic data, and an
improved system design to achieve this goal.

Figure 9 shows the results of Daredevil deployed on An-
droid (which we refer to as Daredevil Android) and iOS
(which we refer to as Daredevil iOS) against Boxer iOS.

Frame Rate (Frames Per Second)

Su
cc

es
s

R
at

e(
%

)

0

25

50

75

100

0 10 20 30

Daredevil Android Boxer iOS Daredevil iOS

Fig. 9: OCR success rate vs frame rate on Daredevil Android,
Boxer iOS and Daredevil iOS. Each point is the average
success rate and frame rate for a specific device type. This
figure shows that by improving our machine learning model
and increasing the frame rate we can achieve higher success
rates. The corresponding plot for Boxer Android is shown in
Figure 1.

Version Count Avg Suc Avg Avg
Rate FPS Dur (s)

Daredevil iOS 1,102,666 89.13% 20.00 9.37
Boxer iOS 3,175,912 88.60% 10.00 10.02
Daredevil Android 477,594 88.46% 4.07 10.55
Boxer Android 329,272 46.72% 1.30 15.45

Fig. 10: Comparison of Daredevil and Boxer. We see, Dare-
devil not only provides over 41% improvement in success rates
on Android but also improves iOS by close to 1%.

This figure shows that Daredevil’s improvements increase the
success rate on Android to closely match success rates on
Boxer iOS, despite the massive hardware advantages present
on iOS. Seeing the success of Daredevil Android, we ported
it to iOS and observed a more than 2x speedup in frame
rates and a moderate improvement in the success rates as well
(Figure 10). The increase in frame rates also lead to Daredevil
being able to support iPhone 6 and below, which Boxer does
not support.

Concretely, from Figure 10 which presents more detailed
results, we see that the average frame rate improves from 1.30
FPS on devices running Boxer Android to 4.07 FPS on devices
running Daredevil Android. Daredevil Android also increases
the average success rate from 46.72% to 88.46%. We also see
an improvement in success rates on iOS, going from 88.60%
on Boxer iOS to 89.13% on Daredevil iOS. Additionally, the
average scan duration decreases from 15.45s to 10.55s on
Android and from 10.02s to 9.37s on iOS. In our system we
start the scan duration timer when the user clicks on the “scan
card” button and finish it after the scan is complete, which
includes accepting camera permissions, pulling their card out
of their wallet, scanning the card, and the 1.5s voting phase

for error correction in the main loop.
Daredevil also improves the usability of card scanning with

4.88% (Figure 11) of Android phones being able to process
fewer than 1 FPS, compared to 44.61% with Boxer Android.
Similar to Boxer, the success rate for Android devices with less
than 1 FPS (37.92%) is lower than the average success rate
for Android overall (88.46%), however the overall increase in
devices that can run the Daredevil ML at 1 FPS or higher
leads to a higher overall success rate (Figure 10 and Figure
11).

We see from Figure 11 that for both Boxer and Daredevil,
as the frame rate increases the overall success rate increases as
well. Beyond 1 FPS, the success rate for Daredevil witnesses
a precipitous rise compared to Boxer, this can be attributed
to Daredevil being trained with orders of magnitude more
data (Section VI-E), the use of an efficient machine learning
pipeline (Section V-D) and marginal improvements seen from
the updated back-end network (Section VI-E). It is clear that
Boxer can also benefit from these improvements, however,
given that 44.61% of the Android devices operate at below
1 FPS for Boxer (and Daredevil also struggles with devices
that operate at frame rates below 1 FPS), a significant portion
of the devices will be excluded from these improvements.
Daredevil’s architecture reduces the number of devices that
operate at below 1 FPS to 4.88% which results in significantly
higher overall success rates.

As with our measurement study Section III, we also evalu-
ated failed attempts with Daredevil. We present the results in
Appendix C.

B. Does Daredevil’s fraud check work in the wild, while
remaining ethical?

To evaluate Daredevil’s ability to stop fraud in real-time,
we report results from a large international app deploying our
SDK. For a test period of 3 months, the app flagged 12,474
transactions as suspicious and challenged them with Daredevil
to verify their payment method.

Daredevil passed 7,612 transactions and blocked the re-
maining 4,862 transactions. Of the 7,612 transactions passed
by Daredevil, only 12 resulted in chargebacks, leading to a
false negative rate of 0.16%. We are unable to report the false
positive rate since the app did not share the false positive
data with us, please see Section VI-C for a evaluation of the
Daredevil’s false positive rate. Based on this initial test, the
app has decided to deploy Daredevil.

To determine if Daredevil’s fraud decisions are correlated
with the device frame rates we further analyze the performance
characteristics of the passed and blocked devices. We find
that the average frame rate of devices that Daredevil passed
was 1.84 FPS and the average frame rate of the devices that
Daredevil blocked was 1.94 FPS, indicating that the frame
rates for the two groups is roughly the same. To visualize these
results, we plot the CDF of percentage of devices vs frame rate
(FPS) for the two groups and present the results in Figure 12.
We see that the plots look very similar indicating that frame

rate is not a discriminating factor between the blocked and
passed groups.

For companies, chargebacks are the ground truth because
they represent exactly what they are liable for financially.
However, it is possible that there was fraud that happened
but the victim failed to report the fraudulent charge to their
issuing bank, thus the actual amount of fraud may be higher
than the chargeback count that we report in this experiment.

C. What is Daredevil’s false positive rate when scanning real
cards and running anti-fraud models?

To evaluate Daredevil’s false positive rate, we report results
from four authors scanning 105 cards in a lab setting using
the latest production anti-fraud models as of December 2020.
In this experiment, we invoke the fraud flow and record
the number of scans that the system incorrectly flags as
being fraudulent. This section complements our real-world
evaluation of Daredevil’s fraud systems in VI-B that shows
our false negative rate.

We scan 105 different real cards multiple times on different
resource-constrained and well-provisioned Android and iOS
devices for a total of 310 scans. The devices we use are iPhone
SE (1st gen), Google Pixel 2, Nexus 6, iPhone 6s, and iPhone
11. Of these 310 scans, Daredevil incorrectly flags seven scans
as fraudulent, giving a false positive rate of 2.2%. The false
positives are uniformly spread across all devices, indicating
that Daredevil does not unfairly permit well-provisioned or
resource-constrained devices, similar to our fraud decisions as
discussed in Figure 12.

Six out of the seven reported false positives were transient
in nature, i.e. further scans of the same card (which we would
expect from a good user) did not result in false positives. The
other card was consistently flagged incorrectly by our fake
media detection model.

D. Does our use of redundancy improve overall accuracy?

In this section, we evaluate the effectiveness of our re-
dundancy based decomposition strategy (described in Sec-
tion V-D) in aiding fraud detection. Specifically, we evaluate
the gains in accuracy on executing our card tampering detec-
tion and fake media detection models in the completion loop.

We run a user study with and without the card detection
model in the main loop to show how it benefits the card
tampering detection and fake media detection models running
in the completion loop. The user-facing feedback from the card
detection model ensures that users center their credit cards so
that both models necessarily make their predictions on valid
credit card images.

Users participating in our study randomly run one of two
versions of our app and scan 30 different predetermined credit
card images on a browser that we provide via a link. We use
their scans to evaluate the impact of the feedback from card
detection in terms of the number of mistakes made by card
tampering detection (i.e. objects present on the card that the
model fails to detect as well as objects not present on the card
that the model incorrectly detects) and the accuracy of fake

Daredevil Boxer
Android FPS Count Success rate Count Success rate
< 1 FPS 23,314 (4.88%) 37.92% 146,890 (44.61%) 31.87%
1−2 FPS 48,271 (10.10%) 84.08% 97,798 (29.70%) 49.97%
>= 2 FPS 406,009 (85.01%) 91.88% 84,584 (25.68%) 68.72%

Fig. 11: Success rates for Android devices running Daredevil and Boxer by frame rate. We can see that Daredevil significantly
reduces the percentage of devices that operate below 1 FPS.

Fig. 12: CDF of percentage of devices against the frame rates
for devices passed and blocked by Daredevil. We see that the
two plots look very similar, indicating that Daredevil’s fraud
decision is largely independent of the frame rate.

Card tampering Fake media
detect. # errors detect. acc.

No Card Detection 1.94 errors per frame 86.24%
With Card Detection 1.26 errors per frame 95.26%

Fig. 13: Results from our user study indicate fewer errors made
by the card tampering detection model and higher accuracy of
fake media detection model when aided by card detection.

media detection in detecting both, the presence and absence
of screens.

Our university’s IRB board reviewed our user study and
ruled it to be exempt from IRB.

Figure 13 summarizes our results. Our design of decomposi-
tion centered on the card detection model ensures that we pass
high-quality frames to the machine learning models, resulting
in fewer errors for the card tampering detection model, de-
creasing the errors per frame from 1.94 errors per frame down
to 1.26 errors per frame. This change also improves accuracy
for our fake media detection model increasing the accuracy
from 86.24% to 95.26%. Overall, these improvement lead to
more accurate fraud detection. For more details on our user
study, please see Appendix D.

E. What is the impact of back-end networks and data aug-
mentation on overall success rates?

To quantify the impact of back-end networks, we validate
our models on image frames extracted from videos recorded

Back Size No. of Recall Precision FPS on
End Params. Pixel 3a
MBv1 1.8MB 869,754 54.06% 100% 7.19
MBv2 1.65MB 861,242 56.25% 100% 7.09

Fig. 14: Comparison of model parameters and accuracy met-
rics on our benchmark datasets using Daredevil with back-
ends MobileNet V1 (MBv1) and MobileNet V2 (MBv2).
We can see that using MobileNet V1 as back-end leads to
less than 1% increase in model parameters with no decrease
in precision and marginal decrease in recall. It should be
noted that the second model (with back-end MobileNet V2)
is currently in production, all the statistics from Daredevil
evaluation correspond to this model.

No. of images Recall Precision
495,134 20% 98.46%
939,165 27.96% 98.89%
1,374,707 42.08% 99.26%
2,006,452 49.06% 100%
2,500,612 56.25% 100%

Fig. 15: Impact of varying the amount of training data on
model accuracy. The model consists of Daredevil OCR with
MobileNet V2 back-end.

by users scanning their credit cards. Crucially, this is the same
benchmark we use to evaluate models that are shipped in
production. The test set consists of 640 image frames extracted
from 32 videos. We train Daredevil OCR with MobileNet
V1 and MobileNet V2 back-ends and report the results in
Figure 14. We define a correct prediction as one where the
model can correctly extract the card number from the image
frame, while an incorrect prediction is one where the model
extracts an incorrect card number (valid but incorrect), finally
all frames where the model is able to extract only a partial
number are considered missed predictions. Accordingly, recall
is the fraction of the frames where the model produced a
correct prediction and precision is the fraction of the all the
predictions that were correct.

Critically, from Figure 14 we see that using MobileNet
V2 instead of MobileNet V1 as the back-end network results
in less than 1% reduction in the number of parameters,
indicating that the reduction in the overall parameters is a
direct result of Daredevil’s architecture independent of the
back-end network. We also see Daredevil with MobileNet

V1 closely matches Daredevil with MobileNet V2 in recall
and precision (Figure 14) further highlighting the back-end
agnostic nature of Daredevil.

To quantify the impact of data augmentation on the im-
provement of overall success rates. We train Daredevil OCR
(Mobile Net V2 back-end) by varying the amount of training
data. Our training data is generated using a custom Generative
Adversarial Network (GAN) [13] architecture and we also use
standard data augmentation techniques in addition to the GAN.
We evaluate the models using the same benchmark as before
and report the results in Figure 15.

In summary, we conclude that with Daredevil’s architecture
we are able to achieve the desired frame rate and with high-
fidelity synthetic data we are able to achieve the desired
accuracy.

VII. RELATED WORK

Our work is related to papers in the areas of financial
fraud, challenge based authentication, computer vision, ma-
chine learning systems and machine learning for mobile.

Recent work has focused on devising challenges that rely
on having users interact with their mobile phones to collect
signals that are then processed for verification [32], [51]. Liu
et al. propose CardioCam [32] to verify users based on their
cardiac biometrics. Researchers have also devised authenti-
cation systems where users are challenged to respond to a
Captcha challenge on their mobile phones, while collecting
audio and visual data of the response that is transmitted to a
secure server for processing [51].

The execution of machine learning models on resource
constrained platforms such as mobile phones has seen active
research in both algorithmic machine learning improvements
[21], [53] as well as enhanced system design [54], [17],
[33]. Liu et al. devise a selection framework, AdaDeep, that
automatically selects a combination of compression techniques
to be applied to a given neural network to balance between
performance and availability of resources [33]. Closer to
our work, researchers at Facebook extensively profile the
wide diversity in compute capabilities on mobile phones for
machine learning [54]. They also identify the benefits of
optimizing to run inference on CPUs over GPUs to provide
stable execution on Android devices, and Daredevil follows
this general plan where we run Android models on the CPU
but use the hardware acceleration available on iOS to speed
up our models. Ran et al. [41] create a client-server hybrid
framework to provide sufficient compute power for running
augmented reality apps. Authors in [38], [55] conduct a
measurement study of mobile performance analysis of various
deep learning models and conclude the need for extensive
optimization and both on-device and cloud based inference.

Recently there has been work on improving the performance
of parallel DNN training [36], [22]. Narayanan et el. [36]
cast DNN training as a computational pipeline to efficiently
utilize the hardware resources. In contrast, Huang et al. [22],
while also using pipelining to train large models, significantly
reduce the memory overhead by re-materialization.

Apps such as Google Pay and Apple Pay are restrictive in
the users they allow to use their systems. Firstly, they are not
available in all regions around the world [15], [4]. More
importantly, these services are restrictive in their support to
pre-paid cards [14]. Over 8 million households in the United
States rely on pre-paid cards, most of whom are blocked from
using these services [1].

Payment card fraud using card skimmers has been studied
recently by Scaife et al. [47]. In this work, researchers built
a card skimmer detector that can be used at physical payment
terminals such as ATMs and gas stations. In another work,
Scaife et al. [46] did a survey of gas pump card skimmer
detection techniques including Bluetooth skimmer detection
on iOS and Android apps, to identify common skimmer
detection characteristics.

VIII. CONCLUSIONS

Deep learning has seen a widespread adoption in a multitude
of domains, outperforming traditional machine learning and
rule-based algorithms. We have also seen it make in-roads
into security with its potential to empower data engineers with
newer features that can limit the prejudices of prior algorithms.
However, if not careful, deep-learning-based security chal-
lenges have the potential of reproducing historical prejudices,
improving the security and user experience of one group at
the expense of altogether blocking the other.

In this paper, with a wide-scale measurement study con-
sisting of 3,505,184 devices that ran in real apps. Our study
looked at a widely deployed deep-learning-based system for
scanning payment cards where we demonstrated that while
these challenges can solve the app’s business problem by
functioning reliably on high-end phones, this challenge has
the potential to disproportionately block users from low socio-
economic tiers who rely on lower tier smartphones.

With the lessons learned from our measurement study, we
designed Daredevil, a payment card verification system that
used deep learning optimizations and improved system design
to build a complex security system that works uniformly on
low-end and high-end mobile devices. We showed the results
from 1,580,260 devices from Daredevil’s public deployment
to demonstrate the practical nature of our system across all
devices.

ACKNOWLEDGMENTS

We would like to thank Xiaojing Liao and the anonymous
reviewers who provided valuable feedback on this work. We
would also like to the thank Weisu Yin, Sven Kuhne and
Allison Tearjen for their contributions to this work. This
research was funded by a grant from Bouncer Technologies.

APPENDIX

A. How does Daredevil compare against other card scanners?

Card.io [39] is a popular open-source scanning library
commonly used in the industry. We compare Daredevil against
Card.io via a lab experiment to measure their scan success
rates on our benchmark test set of 100 credit cards. We observe

Device Blocking + Buffer + Parallel
iPhone 5s 1.65 fps 1.70 fps 2.95 fps
iPhone SE 7.60 fps 7.90 fps 14.90 fps
iPhone XR 28.45 fps 32.60 fps 32.60 fps
LG K20 Plus 1.03 fps 1.04 fps 1.39 fps
Xiaomi Redmi 7 3.16 fps 3.47 fps 4.89 fps
Pixel 2 3.66 fps 4.35 fps 7.95 fps

Fig. 16: Frames per second for 20 second run. This figure
shows the performance improvement measured by frames
processed by our main loop per second with the baseline of a
blocking system, a system that buffers images, and a system
that buffers images and runs the ML models in parallel.

that Daredevil is able to extract the correct card number from
each card, while Card.io is able to extract the correct card
number from only 58 cards. Accordingly, Daredevil’s precision
and recall are both at 100%, while Card.io’s precision and
recall are 100% and 58% respectively. The lower recall of
Card.io is attributed to its inability to scan cards with flat
fonts.

B. Impact of the producer / consumer design on frame rates.

Daredevil processes frames obtained from a live camera
feed. In most cases, the camera runs at a higher frame rate than
the machine learning model, meaning that applications will
have to drop some number of frames while the user is scanning
their card. A natural and common solution to this problem is
to block the live feed while the prediction runs, waiting for
the machine learning models to finish processing the frame
before grabbing the next available frame from the camera.
This solution leads to a lower effective frame rate because of
the waiting time but is memory efficient and ensures that the
models always have fresh data to process by virtue of using
only the latest frame from the camera.

As opposed to processing each camera frame serially and
blocking the live feed while the model runs, Daredevil uses a
producer (the camera) / consumer (machine learning models)
architecture with a bounded LIFO buffer to store the most
recent frames, and run multiple predictions in parallel. This
architecture comes at the increased cost of memory but enables
the machine learning models to execute without any waiting
and ensures that the models process frames that are close to
what the user sees.

We have already seen the producer/consumer design leading
to higher frame rates and success rates in production (Section
VI-A). In this section, we run a controlled lab experiment
to compare the frame rates between the blocking design and
producer/consumer design of running our main loop (the card
detection and OCR models) on frames produced from a fixed
camera feed. We follow this up with a qualitative analysis of
why the blocking design is slower on both Android and iOS,
despite the considerable differences in how the two platforms
execute machine learning inference.

Specifically, we consider three different variations: (1) a
blocking style with a single instance of our main loop models

driven at the frame rate of the camera, (2) a non-blocking style
using a buffer to store the two most recent frames with a single
thread running our main loop models, and (3) a non-blocking
style using a buffer to store the two most recent frames with
two threads on iOS and four threads on Android running
our main loop models. We run this experiment by measuring
the frame rates observed on running the three variations on
different iOS and Android devices of varying capabilities for
20 seconds each.

Figure 16 summarizes our results from these experiments.
From these results we can see a clear increase in the frame
rates across all phones on both iOS and Android on moving
from a blocking system to a system that buffers frames to a
system that buffers frames and runs our main loop models in
parallel.

Improvements in frame rates due to buffering alone range
from 1% to 19%, with faster devices seeing larger gains. The
reason that faster devices see larger gains is because the time
spent waiting for a camera frame is a larger portion of the
overall execution time as the time spent on machine learning
predictions goes down.

Surprisingly, we observe speed ups ranging from 15% to
117% due to adding multiple instances of our main loop mod-
els that run predictions in parallel. This speed up is surprising
because machine learning inference is embarrassingly parallel
and the underlying hardware architectures for iOS and Android
are vastly different, so we did not expect to see gains in
performance on both platforms from the same architectural
improvements.

On iOS as opposed to Android, our machine learning
models run on the GPU, however, the CPU needs to encode
the work on a command buffer before GPU can execute it.
Blocking the live feed while the prediction is running can
lead to idle time, since the GPU has to wait for the CPU to
encode the task.

Our producer/consumer style OCR addresses the GPU
idling issue by creating parallel workloads which ensures
that the CPU will encode the next workload while the GPU
is executing the current workload. The producer pushes the
frames from the camera feed onto a buffer keeping the most
recent frames and removing old stale frames. The consumer
which consists of independent machine learning analyzers pull
images from the buffer and run predictions on the frames
in parallel. Internally, Core ML (Apple’s machine learning
framework) serializes the requests, however, with this style,
encoding and execution happens in parallel.

On Android, since we run our machine learning models on
the CPU, bubbles arising as a result of the communication
between the CPU and GPU are not applicable to Android.
Our producer/consumer OCR as well as a sequential blocking
OCR, both run multi-threaded machine learning inference
(using the industry standard TensorFlow Lite). The two differ
in terms of the number of TensorFlow Lite interpreters run-
ning inference, with the former using multiple independent
interpreters and the latter using a single interpreter. In this
section, we seek to understand why we observe higher frame

Fig. 17: Variation in inference time with increasing number of
threads for inference on a single TensorFlow lite interpreter
on an 8 core Android device(big.LITTLE ARM) and a 24
core Linux server(x86). We attribute the increase in inference
time on Android after 4 threads to the increased computation
running on its slower cores. In contrast, the Linux server shows
a continual decrease in inference time on running inference
upto 24 threads, when all of its uniform cores are maximally
utilized.

rates with the producer/consumer OCR. More concretely, we
seek to understand the differences in how much parallelism
is available and how the hardware is utilized in both cases to
explain the improvements.

TensorFlow Lite runs machine learning inference by travers-
ing a computational graph where the nodes represent com-
putations that are part of the model and edges represent the
dependence of values between different computations [2]. We
inspect the TensorFlow Lite source code to find that while run-
ning multi-threaded inference through a single interpreter, it is
only the individual computations corresponding to the nodes
of the computational graph that execute on multiple threads,
while the invocation of these nodes happens sequentially on
a single thread. Thus, with a single interpreter not more than
one node of the computational graph can run at a given time.

As a result, increasing the number of threads for a single
interpreter does not lead to faster inference if some threads
execute slower than others. While most Android phones in
use today either have 4 or 8 CPU cores, we uniformly see the
optimal performance when using 4 threads for inference. We
attribute this to the adoption of Arm’s big.LITTLE architecture
[49] on phones with 8 cores, where 4 cores are designed for
efficiency rather than performance, and are thus slower than
the other 4 cores designed for performance, while all cores
are uniform in quad core Android devices.

We verify the slowing down of inference on heterogeneous
cores by plotting the variation in inference time against the
number of threads used on an Android device having 8 cores
following ARM’s big.LITTLE architecture and a Linux server
having 24 equivalent cores running x86. The inference times
start going up beyond 4 inference threads on the Android
device, while it starts to go up only after 24 threads on the
Linux server. These plots are shown in Figure 17.

Our producer/consumer OCR is not affected by the hetero-
geneity of CPU cores since it invokes multiple interpreters

Platform Count Avg Avg
FPS Duration (s)

Daredevil Android 55,093 3.04 22.58
Daredevil iOS 119,826 18.77 17.38

Fig. 18: Failure cases for Daredevil on Android and iOS

in parallel. Multiple nodes belonging to separate graphs com-
ing from distinct interpreters can execute at the same time,
showing a better utilization of the available hardware and
correspondingly faster scan times with the producer/consumer
OCR.

C. Analysis of Daredevil’s failure cases

From our real-world deployment of Daredevil, we observed
174,919 failed attempts where users gave up on trying to scan
their card. We aggregate the duration of these scans on iOS
and Android to report that Android users waited an average
of 22.58s and iOS users waited an average of 17.38s to scan
their cards before giving up. This is shown in Figure 18.

D. User study to evaluate the use of redundancy based de-
composition

We ask users participating in our study to visit a link where
they can scan 30 different credit card images via our app
running on their phone. On opening the link, we display 30
credit card images in a random sequence from a predetermined
set of cards. We manually label the objects present on these
cards, such as bank logo etc., for each frame collected from
our user study videos which serve as ground truth labels for
card tampering detection. Although users participating in the
study scan cards that are displayed on device screens, we
manually label each frame from each video for the presence
of screens to cover cases where the user starts executing the
app on the phone before pointing it at the screen. These labels
are our ground truth labels for fake media detection. The users
randomly run one of two versions of the app: with and without
the card detection model. We carry out our user study virtually
due to the restrictions imposed by the COVID-19 pandemic.

We obtain a total of 603 scan videos from the user study,
of which 273 were collected by providing explicit feedback
to the user to center their card by running the card detection
model and the remaining 330 were collected without any such
feedback. For the scans collected without feedback, we pass
all extracted frames through the card tampering detection and
fake media detection models. For the scans with feedback, we
first pass the frames through the card detection model to only
select those with centered cards to pass to the card tampering
detection and fake media detection models. We then compare
the performance of the two models in both cases.

From scans without feedback from card detection, we
randomly sample 50 scans and pass all 4,213 frames extracted
from them to the card tampering detection model. We consider
expected objects not detected by the model as well as objects
incorrectly predicted by the model that are not present in the
card as errors. The model makes a total of 8,163 errors at an

average of 1.94 errors per frame. We also sample 50 random
scans from those with feedback and pass 1,973 centered
frames extracted from them to the card tampering detection
model. In this case, it makes a total of 1.26 errors per frame.

The fake media detection model makes correct predictions
on 21,413 out of 24,829 frames extracted from all 330 scans
without feedback at an accuracy of 86.24%. Of the 9,512
centered frames extracted from all 273 scans with feedback,
the fake media detection model makes correct predictions on
9,061 frames at an accuracy of 95.26%.

E. Will increasing the frame rate further continue to increase
the success rate?

This section serves to answer the question of whether
increasing our current frame rates would lead to further
improvements in success rate without changing the machine
learning model. Since card scanning involves sending frames
from a live camera feed through a machine learning model,
faster frame rates could imply two consecutive frames being
practically identical to the eyes of a machine learning model,
leading to no gains obtained from a higher frame rate. Alterna-
tively, it could be that there are sufficient differences between
two consecutive frames for the machine learning model to
produce a different and possibly better prediction, resulting in
a shorter scanning duration.

Concretely, consider an example where an OCR model is
able to process frames from the user’s video feed at a rate of 5
FPS, and the user scans for 10 seconds. This means that we run
OCR inference on 50 frames in total. We refer to the number
of frames on which the model makes correct predictions as
the number of useful frames. If this model makes correct
predictions on 10 frames, then we have 10 useful frames from
the total set of 50 frames. Now suppose, the same OCR model
processes the same 10 second feed at 10 FPS instead of 5,
i.e., this model processes a total of 100 frames. If this setting
results in more useful frames, then running at a higher frame
rate would lead to shorter scanning times on average.

To study this, we analyze videos of users scanning cards
from our user study described in Section VI-D. We simulate
different frame rates by extracting frames at differently spaced
intervals from the recorded videos. Closer intervals represent
faster frame rates and possibly identical frames, and vice versa
for wider intervals. We then pass these frames through two
different OCR models (Boxer OCR and Daredevil OCR) and
for each frame rate we compute the percentage of useful
frames obtained to the total number of frames processed.

Figure 19 plots the variation of frame rates to percentage of
frames with successful predictions averaged over 27 different
scanning videos sampled from our user study. The plots
are roughly constant for both Boxer OCR and Daredevil
OCR. This indicates that with increasing frame rates and
correspondingly increasing the number of frames processed
by the models, the number of useful frames (i.e., the number
of frames on which we are successfully able to run OCR)
also increases. These results suggest that even closely spaced
frames contain sufficient diversity leading to different, and

Fig. 19: Plot shows that as the frame rates increase, the
fraction of frames with successful predictions roughly remains
constant, meaning that the number of frames with successful
predictions increases with frame rate. Thus, systems enhance-
ments to increase the frame rate, even with the same machine
learning model can lead to faster scanning times.

possibly correct predictions with the same machine learning
model. Thus, further systems enhancements that lead to higher
frame rates with the same OCR model contribute to faster scan
times and better user experience.

REFERENCES

[1] Prepaid Cards for the Unbanked and Underbanked. https:
//www.needhelppayingbills.com/html/prepaid cards help unbanked
and underbanked.html.

[2] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
flow: A system for large-scale machine learning. In Proceedings of the
12th USENIX Conference on Operating Systems Design and Implemen-
tation, OSDI’16, page 265–283, USA, 2016. USENIX Association.

[3] Apple, Inc. CoreML. https://developer.apple.com/machine-learning/
core-ml/.

[4] Apple, Inc. Countries and regions that support Apple Pay. https://
support.apple.com/en-us/HT207957.

[5] Alex Beutel, Jilin Chen, Tulsee Doshi, Hai Qian, Allison Woodruff,
Christine Luu, Pierre Kreitmann, Jonathan Bischof, and Ed H. Chi.
Putting fairness principles into practice: Challenges, metrics, and im-
provements. In Proceedings of the 2019 AAAI/ACM Conference on AI,
Ethics, and Society, AIES ’19, page 453–459, New York, NY, USA,
2019. Association for Computing Machinery.

[6] Airbnb Data Science Blog. Fighting financial fraud with targeted fric-
tion, February 2018. https://medium.com/airbnb-engineering/fighting-
financial-fraud-with-targeted-friction-82d950d8900e.

[7] Uber Engineering Blog. Advanced technologies for detecting and
preventing fraud at uber, June 2018. https://eng.uber.com/advanced-
technologies-detecting-preventing-fraud-uber/.

[8] Michal Busta, Lukas Neumann, and Jiri Matas. Deep textspotter: An
end-to-end trainable scene text localization and recognition framework.
In The IEEE International Conference on Computer Vision (ICCV), Oct
2017.

[9] Zainul Abi Din, Hari Venugopalan, Jaime Park, Andy Li, Weisu Yin,
Haohui Mai, Yong Jae Lee, Steven Liu, and Samuel T. King. Boxer: Pre-
venting fraud by scanning credit cards. In USENIX Security Symposium
(USENIX Security 2020). USENIX, 2020.

[10] Sanghamitra Dutta, Dennis Wei, Hazar Yueksel, Pin-Yu Chen, Sijia Liu,
and Kush R. Varshney. An information-theoretic perspective on the
relationship between fairness and accuracy, 2019.

[11] Kate Fazzini. How criminals use uber and airbnb to launder money
stolen from your credit card, 2019. https://www.cnbc.com/2019/02/07/
how-criminals-use-airbnb-uber-launder-stolen-credit-card-money.html.

[12] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In
2014 IEEE Conference on Computer Vision and Pattern Recognition,
pages 580–587, 2014.

[13] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial networks, 2014.

[14] Google. Add a payment method. https://support.google.com/pay/answer/
7625139.

[15] Google. Countries where you can use Google Pay. https://support.
google.com/pay/answer/9023773.

[16] Google. Edge TPU. https://cloud.google.com/edge-tpu.
[17] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agarwal,

Alec Wolman, and Arvind Krishnamurthy. Mcdnn: An approximation-
based execution framework for deep stream processing under resource
constraints. In Proceedings of the 14th Annual International Conference
on Mobile Systems, Applications, and Services, MobiSys ’16, page
123–136, New York, NY, USA, 2016. Association for Computing
Machinery.

[18] Hans Peter Luhn. Computer for verifying numbers, August 1960. https:
//patents.google.com/patent/US2950048.

[19] Moritz Hardt, Eric Price, and Nathan Srebro. Equality of opportunity in
supervised learning. In Proceedings of the 30th International Conference
on Neural Information Processing Systems, NIPS’16, page 3323–3331,
Red Hook, NY, USA, 2016. Curran Associates Inc.

[20] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen,
Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang,
Vijay Vasudevan, Quoc V. Le, and Hartwig Adam. Searching for
mobilenetv3. CoRR, abs/1905.02244, 2019.

[21] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. CoRR, abs/1704.04861, 2017.

[22] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao
Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui
Wu, and zhifeng Chen. Gpipe: Efficient training of giant neural
networks using pipeline parallelism. In Advances in Neural Information
Processing Systems 32, pages 103–112. Curran Associates, Inc., 2019.

[23] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song
Han, William J. Dally, and Kurt Keutzer. Squeezenet: Alexnet-level
accuracy with 50x fewer parameters and <1mb model size. CoRR,
abs/1602.07360, 2016.

[24] Andrey Ignatov, Radu Timofte, William Chou, Ke Wang, Max Wu,
Tim Hartley, and Luc Van Gool. AI benchmark: Running deep neural
networks on android smartphones. CoRR, abs/1810.01109, 2018.

[25] Apple Inc. About face id advanced technology. https://support.apple.
com/en-us/HT208108.

[26] Coinbase Inc. Id document verification. https://help.coinbase.com/
en/coinbase/getting-started/authentication-and-verification/identity-
verification.html.

[27] Lime Inc. Apply for lime access. https://www.fountain.com/limebike/
apply/united-states-limeaccess.

[28] Lime Inc. Lime access: Mobility for all. https://www.li.me/community-
impact.

[29] Heinrich Jiang and Ofir Nachum. Identifying and correcting label bias
in machine learning. CoRR, abs/1901.04966, 2019.

[30] Jumio. Breathtaking growth requires smart onboarding. https://www.
jumio.com/app/uploads/2018/01/Instacart-Case-Study.pdf.

[31] Niki Kilbertus, Mateo Rojas-Carulla, Giambattista Parascandolo, Moritz
Hardt, Dominik Janzing, and Bernhard Schölkopf. Avoiding discrimina-
tion through causal reasoning. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS’17, page
656–666, Red Hook, NY, USA, 2017. Curran Associates Inc.

[32] Jian Liu, Cong Shi, Yingying Chen, Hongbo Liu, and Marco Gruteser.
Cardiocam: Leveraging camera on mobile devices to verify users while
their heart is pumping. In Proceedings of the 17th Annual International
Conference on Mobile Systems, Applications, and Services, MobiSys
’19, page 249–261, New York, NY, USA, 2019. Association for Com-
puting Machinery.

[33] Sicong Liu, Yingyan Lin, Zimu Zhou, Kaiming Nan, Hui Liu, and
Junzhao Du. On-demand deep model compression for mobile devices:
A usage-driven model selection framework. In Proceedings of the 16th
Annual International Conference on Mobile Systems, Applications, and

Services, MobiSys ’18, page 389–400, New York, NY, USA, 2018.
Association for Computing Machinery.

[34] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C. Berg. Ssd: Single shot multibox
detector. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling,
editors, Computer Vision – ECCV 2016, pages 21–37, Cham, 2016.
Springer International Publishing.

[35] Lyft Engineering Blog. Stopping fraudsters by changing products,
December 2017. https://eng.lyft.com/stopping-fraudsters-by-changing-
products-452240f2d2cc.

[36] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R. Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei
Zaharia. Pipedream: Generalized pipeline parallelism for dnn training.
In Proceedings of the 27th ACM Symposium on Operating Systems Prin-
ciples, SOSP ’19, page 1–15, New York, NY, USA, 2019. Association
for Computing Machinery.

[37] Alfred Ng. Uber fights off scammers every day. here’s how it learned
the tricks. https://www-cnet-com.cdn.ampproject.org/c/s/www.cnet.
com/google-amp/news/uber-fights-off-scammers-every-day-heres-how-
it-learned-the-tricks/.

[38] Samuel S. Ogden and Tian Guo. Characterizing the deep neural networks
inference performance of mobile applications, 2019.

[39] PayPal. Card.io: Scan credit cards in your mobile app. https://card.io.
[40] Karthik Ramasamy and Lenny Evans. Using computer vision to combat

stolen credit card fraud. In Strata data conference, March 2018.
[41] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen. Deepdecision: A mobile

deep learning framework for edge video analytics. In IEEE INFOCOM
2018 - IEEE Conference on Computer Communications, pages 1421–
1429, 2018.

[42] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali
Farhadi. You only look once: Unified, real-time object detection. 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 779–788, 2016.

[43] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing Systems 28, pages
91–99. Curran Associates, Inc., 2015.

[44] Sam Tolomei. Shrinking APKs, growing installs. https://medium.com/
googleplaydev/shrinking-apks-growing-installs-5d3fcba23ce2.

[45] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. Inverted residuals and linear bottlenecks:
Mobile networks for classification, detection and segmentation. CoRR,
abs/1801.04381, 2018.

[46] N. Scaife, J. Bowers, C. Peeters, G. Hernandez, I. N. Sherman,
P. Traynor, and L. Anthony. Kiss from a rogue: Evaluating detectability
of pay-at-the-pump card skimmers. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 1000–1014, 2019.

[47] Nolen Scaife, Christian Peeters, and Patrick Traynor. Fear the reaper:
Characterization and fast detection of card skimmers. In 27th USENIX
Security Symposium (USENIX Security 18), pages 1–14, Baltimore, MD,
2018. USENIX Association.

[48] Stripe. Disputes and fraud. https://stripe.com/docs/disputes.
[49] Arm technologies. Arm big.little. https://www.arm.com/why-arm/

technologies/big-little.
[50] Uber. Verifying your account. https://help.uber.com/ubereats/

article/verifying-your-account?nodeId=0b38e02f-eb4c-41f9-92e5-
6b8c409e20c7.

[51] Erkam Uzun, Simon Chung, Irfan Essa, and Wenke Lee. rtcaptcha: A
real-time captcha based liveness detection system. 02 2018.

[52] Verizon. What is the difference between 3G, 4G and 5G? https://www.
verizon.com/about/our-company/5g/difference-between-3g-4g-5g.

[53] Robert Wang, Xiang Li, Shuang Ao, and Charles Ling. Pelee: A real-
time object detection system on mobile devices. 04 2018.

[54] C. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan,
K. Hazelwood, E. Isaac, Y. Jia, B. Jia, T. Leyvand, H. Lu, Y. Lu,
L. Qiao, B. Reagen, J. Spisak, F. Sun, A. Tulloch, P. Vajda, X. Wang,
Y. Wang, B. Wasti, Y. Wu, R. Xian, S. Yoo, and P. Zhang. Machine
learning at facebook: Understanding inference at the edge. In 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pages 331–344, 2019.

[55] Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix Xiaozhu Lin, Yunxin
Liu, and Xuanzhe Liu. A first look at deep learning apps on smartphones.

In The World Wide Web Conference, WWW ’19, page 2125–2136, New
York, NY, USA, 2019. Association for Computing Machinery.

