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Abstract
We present GlucOS, a novel system for trustworthy auto-
mated insulin delivery. Fundamentally, this paper is about
a system we designed, implemented, and deployed on real
humans and the lessons learned from our experiences.

GlucOS introduces a novel architecture that allows users
to personalize diabetes management using any predictive
model (including ML) for insulin dosing while simultane-
ously protecting them against malicious models. We also
introduce a novel holistic security mechanism that adapts
to unprecedented changes to human physiology. We use
formal methods to prove correctness of critical components
and incorporate humans as part of our defensive strategy.
Our evaluation includes both a real-world deployment with
seven individuals and results from simulation to show that
our techniques generalize. We highlight that our results are
not from a lab study, with people using GlucOS to manage
Type 1 Diabetes in their daily lives. Our results show that
GlucOS maintains safety and improves glucose control even
under attack conditions. This work demonstrates the poten-
tial for secure, personalized, automated healthcare systems.
Our entire source code is available at this link.

1 Introduction
Type 1 Diabetes (T1D) is a metabolic disorder where an indi-
vidual’s pancreas stops producing insulin. To compensate,
they inject synthetic insulin. Mobile applications, called au-
tomated insulin delivery systems, use subcutaneous sensors
to continuously monitor glucose concentrations (glucose is
the body’s primary energy source) and regulate glucose by
automatically injecting insulin via an insulin pump (Figure
1). However, insulin is a dangerous hormone as too much
insulin can kill people in a matter of hours [22] and too little
insulin can kill people in a matter of days [13]. For automated
insulin delivery systems, the key challenge is to maintain a
balance: provide enough insulin to prevent dangerously high
glucose levels while avoiding excessive insulin that could
lead to life-threateningly low glucose levels. In this context,

security means ensuring integrity for insulin dosing against
malicious attacks or inadvertent errors.
Several commercial [3, 5, 18] and open-source [47, 55]

automated insulin delivery systems exist today, but none
of them consider security as a primary design constraint.
The complexity of these systems makes it difficult to reason
about their correctness, which is crucial for security. For
example, the OpenAPS [55] core function for calculating
insulin doses consists of 1192 lines of Javascript code, 63 in-
put and configuration parameters, and 90 branch statements.
Furthermore, automated insulin delivery systems that use
the OpenAPS algorithm embed it into native apps using a
WebView for Javascript interpretation, increasing the overall
complexity and attack surface. Vulnerabilities or attacks on
such systems can be severe and fatal.

In this paper, we take on the challenge of building the first
trustworthy automated insulin delivery system, called Glu-
cOS. Our design includes: (1) an architecture where we apply
separation principles for isolated and simple components,
(2) a novel security mechanism and policy to enable secure
insulin delivery, (3) a mechanism to account for unprece-
dented changes in human physiology, and (4) the application
of formal methods to prove correct the implementation of
our insulin delivery path, the most sensitive part of the sys-
tem. Despite these efforts, we identify scenarios that require
users to take action for security. Thus, we incorporate hu-
mans as part of our defensive strategy, providing them with
agency and trust to take the required, corrective actions. In
contrast to existing systems, GlucOS enables the use of any
algorithm (including ML) to calculate insulin doses, while
ensuring security by moderating insulin doses using 25 lines
of formally verified Swift code.
Our approach is distinguished by its holistic considera-

tion of the entire problem of automated insulin delivery. We
provide clear security boundaries, mechanisms and policies
to mitigate attacks on vulnerable components, and formal
methods to provide assurances that our implementation is
correct. Unlike prior research that exclusively focuses on
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(a)Devices for automated in-
sulin delivery. This figure is
from breakthrought1d.org. (b) Closed-loop architecture. (c) Overall GlucOS architecture.

Figure 1. Overview of automated insulin delivery devices, closed-loop architecture, and GlucOS.

simulation for evaluation [75, 76], we also evaluate our ap-
proach with an end-to-end system used by individuals to
manage diabetes with all the uncertainties of the real world.

Given their life-threatening stakes, automated insulin de-
livery systems require special consideration beyond the tra-
ditional purview of the systems and security communities.
Research on operating systems or web browsers can list
scores of CVEs from current systems and show how their
system improves security by eliminating their impact. Our
position is that we need to make sure that automated in-
sulin delivery systems are never assigned CVEs, because
vulnerabilities can kill people. Thus, we focus on building a
new system, using security-first principles, to avoid security
vulnerabilities and mitigate their damage from the start.

Our main contribution lies in a new end-to-end system
that we built and the lessons learned from our experience
designing, implementing, and deploying GlucOS to humans
to manage their T1D. Our novel contributions include:

• Security mechanisms and policies that protect indi-
viduals from malicious dosing algorithms, as well as
drastic changes in human physiology.

• A case study describing our experiences from a real-
world deployment with seven people, and results from
simulation to show that our techniques generalize.

• A human-centric design that considers the user as an
integral part of the system, influencing both the archi-
tecture and including them in our defensive strategy.

We give top priority to the health, safety, and ethics of
the humans using GlucOS to manage their T1D. Section 10.1
summarizes our ethical considerations.
There are 8.4 million people living with T1D worldwide

[33], underscoring the need for providing trustworthy sys-
tems for automated insulin delivery. Our cross-disciplinary
work, carried out with rigorousmedical and ethical oversight,
is a first step in addressing this need.

2 Overview
Doctors and healthcare professional recognize Type-1 Dia-
betes as a predominantly self-managed condition and sup-
port the adoption of automated insulin delivery systems for
management [23, 40, 51].
This paper describes our design for GlucOS, a system

for trustworthy automated insulin delivery; we have two
primary goals. First, we want the software to be simple and
correct. Second, we want to identify the most vulnerable
parts of the system and design a system to prevent attacks
on these components or withstand successful attacks. This
section describes our overall architecture for GlucOS that
strives to achieve these goals, and our threat model.

2.1 Locking down the insulin delivery path
Our system architecture focuses on providing security mech-
anisms and policies on the insulin delivery path. The insulin
delivery path in automated insulin delivery systems includes
models for calculating the amount of insulin still active in
the individual (insulin can take up to six hours for complete
absorption), closed-loop algorithms for calculating and deliv-
ering insulin doses that could use deep neural networks to
predict future metabolic states. Together, these components
are both the most complex, and the most sensitive from a
security perspective because they are responsible for insulin
delivery.

2.2 Architecture
From a system design perspective, we strive to keep our im-
plementation simple and enable our use of formal methods
to prove correct the most critical parts. For our software sys-
tem architecture, we use separation principles from the OS
and microkernel areas [8, 36] applied to the application layer
to push complexity away from the most critical parts of the
system. This architecture is similar to secure web browsers
[34, 59, 65, 70], which also apply OS separation principles at
the application layer. Figure 1c shows how we decompose
our automated insulin delivery system, where we strive to
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Figure 2. Overall architecture for the BioKernel.

keep our trusted computing base simple. GlucOS includes a
BioKernel that forms our core trusted computing base. The
BioKernel logs events that other components can ingest to
learn the state of the system. These other components in-
clude apps for training ML models, visualizing statistics, an
AI agent for suggesting dosing during meals, and an app for
replaying closed-loop algorithm execution. Together, these
components make up the overall GlucOS system.
Figure 2 shows our architecture for the BioKernel. The

BioKernel is the component that interacts with the contin-
uous glucose monitor (CGM) and insulin pump hardware,
executes the closed-loop dosing algorithm, runs security and
safety checks, and produces event logs that other compo-
nents use to learn the state of the system.

The BioKernel handles the typical operations of automated
insulin delivery systems. It runs the closed-loop algorithm
every five minutes as the new CGM readings come in. Once
the BioKernel receives new CGM readings, it collects the
current metabolic state of the individual and sends it to a
predictivemodel. The predictivemodel calculates the amount
of insulin to inject based on its assessment of the individual’s
current metabolic state and predictions of future metabolic
states. The BioKernel then issues commands to the pump
to deliver the calculated amount of insulin. A pump driver
converts these commands into low-level I/O to program the
pump and adjust insulin delivery.
To withstand attacks, the BioKernel serves as a reference

monitor [10] to enforce security policies on the predictive
model’s pump commands. This reference monitor architec-
ture ensures that we can withstand attacks from malicious
predictive models without having to know the internals of
how they operate. Our reference monitor enforces algorith-
mic security, where we bound the amount of insulin injscted
by themodel to staywithin dynamic safety bounds computed
by a simple reactive safe model.

Our use of formal methods focuses on the software in the
insulin delivery path. We use Hoare logic to prove key func-
tions correct, define system states and transitions to handle
runtime verification check failures safely, and we introduce

the notion of a novel biological invariant. Our biological in-
variant is an end-to-end check of our theoretical calculations
of how the individual’s metabolism should behave compared
to what we observe in practice. Violations of this invariant
suggest the need to temporarily disable automated insulin
delivery in response to an unprecedented change to human
physiology.

2.3 Threat model
Automated insulin delivery systems inject synthetic insulin
to regulate glucose concentration in the body. In the long run,
high glucose or hyperglycemia leads to dangerous health
outcomes such as kidney failure, heart disease, amputation
etc. The most serious and immediate health risk for people
who use synthetic insulin is low glucose, or hypoglycemia.
Hypoglycemia results from an overdose of insulin. Once
an automated insulin delivery system has delivered insulin,
there is no way to remove it from the body. If untreated, se-
vere hypoglycemia can lead to loss of consciousness, seizure,
or death in a matter of hours. Thus, our primary security
objective is to reduce or eliminate hypoglycemia.

Since personalization is important for T1D self-management
[43], our design philosophy centers around humans. We pro-
vide flexibility for people to use any model for insulin dosing
that suits their preferences. Our goal is to make sure that
they stay safe even when they pick vulnerable or malicious
models. Attackers may target automated insulin delivery
systems to directly harm the human using the system.
For safety, we focus on protecting users from incorrect

insulin doses that emerge from both, poorly chosen insulin
dosing models, as well as inadvertent mistakes from benign
models. Malicious or vulnerable models, if unchecked, can
be devastating because they directly affect insulin delivery
and can lead to life-threatening hypoglycemia.

We build GlucOS as a complete iOS app, and accordingly
assume that the Swift type system, that forms the back-
bone of the iOS ecosystem, is secure. We only consider FDA-
approved CGMs and pumps. With the FDA being stringent
with security guidelines for medical devices [30], we assume
that CGM and pump hardware are free of attacks. However,
we assume that CGMs and pumps are prone to measurement
errors within their standard error bounds [29, 64, 79].

We discuss malicious pump drivers and ways to overcome
them in Appendix D.

3 Design principles
Four key principles guide our design of GlucOS:

• Principle 1: Focus on simplicity for security mechanisms
by using domain knowledge. Rather than design a gen-
eral security mechanism for a broad class of problems,
we focus specifically on the highly-risky domain of
automated insulin delivery. Using domain-specific in-
sights, we provide simple security mechanisms that
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both humans and theorem proving software can easily
reason through.

• Principle 2: Design the system to empower humans to
provide security. Automated insulin delivery repre-
sents an extreme example of high-stakes healthcare.
For people to be able to use a secure system to man-
age their health, they need to have agency over the
security of their system. Rather than simply “alert-
ing the human” if something unexpected happens,
we empower the humans using GlucOS to be active
participants in the security of their system.

• Principle 3: Consider asymmetries in risk. Insulin dosing
possesses an inherent asymmetry where overdosing
poses greater immediate danger than underdosing
[13, 22]. With GlucOS, we optimize our mechanisms
to be more aggressive when protecting individuals
from insulin overdose.

• Principle 4: Adaptability for security.Although we care-
fully design our software to be correct, humans and
glucose metabolism can change quickly. Any change
that affects the correctness of models of glucose me-
tabolism would compromise the security of the entire
system. Thus, we design GlucOS to adapt to constantly
changing human physiology to provide security both
in our formulation of the problem and our use of for-
mal methods.

Although we do strive to apply these principles to the
entire design, there are times when there is tension between
them. For example, our biological invariant (Section 5) helps
with adaptability (Principle 4) by detecting when our phys-
iological models are wrong and considers asymmetries in
risk (Principle 3). But to ensure that the human remains em-
powered (Principle 2), we use necessarily complex logic to
deal with cases when the biological invariant does not hold
(violation of Principle 1). These types of tensions are funda-
mental to a real-world system that manages human health
and underscores the importance of building real systems to
gain experience to navigate these tradeoffs.

4 Algorithmic security: Withstanding
malicious dosing algorithms

We have dual goals for our algorithmic security mechanism
of being both defensive and enabling. Our security mecha-
nism is defensive by protecting people from inappropriate
insulin doses emerging from bugs, corner cases, or even at-
tacks merging from complex predictive algorithms – be it
deep neural networks or massive sets of hand-crafted rules.
Our algorithmic security mechanism is enabling in allowing
people to employ any predictive algorithm to personalize
the system to suit their individual preferences.
To enable predictive algorithms, GlucOS’s algorithmic

security mechanism introduces a novel architecture that
separates the use of predictive models for insulin dosing from

accounting and safety logic to ensure that they are operating
safely. This architecture provides flexibility in using any
predictive model while enforcing bounds on insulin doses
with a simple and formally verified model for safety.

4.1 Need for algorithmic security
Closed-loop automated insulin delivery systems have tra-
ditionally used reactive physiological models (such as PID
controllers [42, 71]) to calculate insulin doses. These mod-
els essentially use standard physiological models to react
to offset the amount of excess glucose in the body. This
makes it easy to reason about the correctness of their insulin
doses. However, because synthetic insulin is slow-acting and
takes up to six hours to fully absorb, the reactive nature of
these models limits their effectiveness in regulating elevated
glucose concentrations. Thus, having the ability to inject in-
sulin proactively by predicting glucose concentrations leads
to more effective glucose regulation. But, predictive dosing
opens up the individual to the risk of potentially dosing too
much insulin, and current insulin delivery systems have been
reluctant to adopt the most advanced forms of predictive
models.
Researchers have shown that modern advances in ML,

such as deep neural networks, work well in making predic-
tions for automated insulin delivery [39, 67, 68, 74, 77, 78].
Despite their promise, none of the existing automated in-
sulin delivery systems use deep neural networks. Instead,
they use statistical methods, like linear regression or model
predictive control [21, 48, 55, 58, 69]. The reason for using
this more traditional form of ML is sound. It provides con-
sistent, explainable results and has a physiological basis that
people can use to vet its decisions. While advanced deep neu-
ral networks have more predictive power, current systems
do not incorporate them due to their black-box nature and
the potentially dire consequences of mispredictions. Even
a well-tested ML model does not guarantee immunity to
misprediction [25, 62], especially when predicting human
metabolism that is influenced by numerous ever-changing
factors such as food, exercise, stress, environment, allergies,
puberty, temperature and so on [15]. An automated insulin
delivery system’s unchecked misprediction or “hallucina-
tion” [1] could have lethal consequences if it delivers an
inappropriate insulin dose [13, 22].

Beyond the use of ML, the complexity of rule-based predic-
tive models (such OpenAPS’ thousands of lines of code [55]),
make it difficult to reason about their correctness, even if
they are generally effective at regulating glucose for diabetes
management. Additionally, people requesting enhancements
to such models [31, 32] based on their personal struggles
further exacerbates model complexity.

Thus, avoiding predictivemodels for insulin delivery comes
at the cost of effective diabetes management. On the other
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hand, incorporating them introduces safety concerns stem-
ming from challenges in the explainability of complex code
and deep neural networks.

4.2 Mechanism fundamentals
The key novel insight underpinning our security mechanism
design is that all correct insulin dosing algorithms, regardless
of whether they are predictive or reactive, will deliver the
same amount of insulin over a sufficiently long period (such
as a full digestion-absorption cycle). People inject insulin to
facilitate glucose absorption after eating. Digestion converts
food to glucose, and insulin facilitates the absorption of glu-
cose by tissues (e.g., the brain) where the body can use it
as an energy source. Since insulin dosing is dominated by
food consumption, all correct algorithms should dose the
same amount of insulin to cover glucose from digestion. But
the timing of these insulin doses has a large impact on the
individual’s glucose regulation.
Our algorithmic security mechanism pairs two models.

Our first model is a predictive model that anticipates future
metabolic states and doses insulin proactively. Our second
model is a reactive safe model that measures the current
metabolic state and doses insulin based only on what it can
measure currently. This pairing balances proactive insulin
dosing for faster responses with a more conservative ap-
proach for safety. As per our insight, the reactive model
would dose enough insulin eventually, so we use it as our
baseline but provide predictive models with enough buffer
to inject insulin earlier and safely.

Architecturally, in a novel approach for automated insulin
delivery systems, the predictive model runs outside of our
trusted computing base while the reactive safe model is part
of the trusted computing base. This separation enables indi-
viduals to use whatever predictive models they want, while
maintaining security. It also defends against malicious pre-
dictive models, as all insulin delivery decisions are ultimately
vetted by the reactive safe model. This design also enables
people to update their predictive models without violating
core safety guarantees.
Conceptually, the predictive model is the primary model

in our system and should control the pump most of the time.
We use the reactive safe model for accounting so that we can
track how far the predictive model deviates from a known-
to-be-safe baseline. Then, we bound the size of this deviation.
By combining these two models, we strive to get beneficial
properties from both. Our approach combines the safety of a
reactive model and the performance from a predictive model.

Our security mechanism draws inspiration from previous
work on combining simple and complexmodels for safety [52,
61]. However, our approach extends these ideas by providing
a novel security mechanism specifically designed for insulin
delivery models. Our key contributions lie in our insight into
the security properties of insulin delivery algorithms and

Figure 3. Algorithmic security mechanism for GlucOS.

our principles for how to apply our mechanism to automated
insulin delivery systems (Section 4.3).

Figure 3 shows how our algorithmic security mechanism
works. The whole process starts when a new CGM reading
arrives. Once the BioKernel receives a new CGM reading, it
sends the recent history of CGM readings and insulin doses to
both the reactive safe model and the predictive model. These
models independently produce pump commands (called a
temporary basal command) that set the insulin delivery rate
for the pump over the next 30 minutes. The BioKernel then
collects both commands and looks back at the differences
in doses between both models over the past three hours to
calculate how much insulin the predictive model has dosed.
If the predictive model is still within the safe insulin delivery
bounds relative to the reactive safe model’s doses, the BioK-
ernel uses the predictive model’s command to program the
pump. If the predictive model has exhausted its limits, we
clamp its calculated insulin to fit within the insulin bounds
relative to the reactive safe model.
To set bounds, we base our calculations on human phys-

iology. People produce a background level of glucose for
energy. Our method for setting bounds allows the predictive
model to use up to three hours worth of background insulin
in advance. If the prediction is correct and glucose levels rise
(e.g., from eating), the proactive insulin will manage it. If the
prediction is wrong and no extra glucose appears, the body’s
ongoing glucose production will use the extra insulin over
the next three hours.

4.3 Model principles
The mechanism described above can be implemented with
various algorithms. Our contribution is not in the specific
algorithms we use, but rather in the insight around insulin
delivery being equal for all correct algorithms and how we
use this insight for security. In this section, we outline the
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algorithms we use in our current implementation and define
the principles for how to apply security to any predictive
insulin dosing algorithms.
Algorithmically, we use a PID controller [27] from feed-

back control for our reactive safe model, and we use a deep
neural network from the literature for meal predictions for
our predictive ML model [53]. Although we use this model
in our implementation, our system supports any predictive
model. The design of the reactive safe model is crucial for
algorithmic security, as it serves as the anchor for the secu-
rity mechanism. The ideal reactive safe model should be safe,
easy to understand, and have a formally verified implemen-
tation (Section 7). To ensure the safety of this model, we base
its calculations solely on facts observed automatically from
the CGM and the insulin pump. Given these high-quality
sources of data, and a simple insulin absorption physiologi-
cal model, we can calculate how much insulin an individual
needs and how much previously injected insulin has not
yet taken effect. From this calculation, we know how much
insulin to inject or withhold.
These calculations are standard calculations that people

who inject insulin manually use to determine dosing, making
them easy for people who manage T1D or their medical care
team to understand. The difference in our system is that we
run these calculations automatically and every five minutes
to adjust to the latest sensor readings. This basic formulation
is standard and used in most automated insulin delivery
systems.

Our evaluation shows that a benign predictive ML model
outperforms the reactive safe model in terms of glucose reg-
ulation, both in simulation (Section 9) and for the individual
who uses our system for their real-world insulin dosing (Sec-
tion 10). Our evaluations in simulation also demonstrate
the fatal consequences of using an incorrect or malicious
ML for insulin dosing, as well as our mechanism’s ability to
withstand such models to protect individuals (Section 9).

5 Holistic security: Biological invariant
We recognize that human physiology is complex and it is
difficult to ensure that the BioKernel’s reactive safe model,
which forms the basis of algorithmic security, can handle
all changes to human physiology. Concretely, since the re-
active safe model incorporates parameters that represent
the user’s physiological state, any divergence in their values
could render the model ineffective in protecting the user.
With GlucOS, we introduce a biological invariant to detect
when such divergence could endanger the user, and shut off
automatic insulin dosing to protect them.
From a high level, the biological invariant runs experi-

ments every 5 minutes to empirically measure physiological
parameters. These experiments compare the expected drop
in glucose from prior insulin doses against the observed
change in glucose sensor readings, thereby providing an

end-to-end security mechanism. The biological invariant ef-
fectively serves as a “catch-all” off-switch for insulin delivery
when the BioKernel’s view of the user’s physiology becomes
inaccurate. Although our reactive safe model adapts to small
changes in physiological parameters by design, the biologi-
cal invariant detects large changes that operate outside of
the bounds of our design.
Insulin sensitivity, which is the amount of glucose ab-

sorbed per unit of insulin, is a key physiological parameter
that can change. Changes to insulin sensitivity happen from
drastic changes to the user’s glucose absorption, such as dur-
ing exercise, when the body uses glucose without needing
insulin [14], or if the pump insertion site hits a vein and
delivers insulin directly into the blood stream [63]. In such
cases, the user becomes more sensitive to insulin where the
same amount of insulin will facilitate more absorption of
glucose than expected, increasing the risk of insulin over-
dose. For example, if the user becomes twice as sensitive to
insulin while jogging, the same insulin dose would decrease
their glucose by twice the expected amount, pushing them
towards dangerously low glucose (hypoglycemia).
To implement the biological invariant, we compare the

actual change in the user’s glucose, against the BioKernel’s
calculations of how much their glucose should have changed
based on current insulin doses over a fixed time window. If
the observed drop in glucose deviates beyond a clinically
determined threshold of 30 mg/dl [38, 41] from the calculated
drop in glucose within a window of 30 minutes, we consider
the biological invariant to have been violated and shut off
insulin delivery. Mathematically, we define the biological
invariant as follows:

Δ𝐺𝐶 − Δ𝐺𝐴 ≤ 𝑇 (1)

Here, Δ𝐺𝐶 denotes the BioKernel’s calculated drop in glu-
cose based on insulin doses over a 30 minute window, Δ𝐺𝐴

denotes the actual drop in the user’s glucose over the same
time window, and 𝑇 is the threshold of 30 mg/dl. Crucially,
we note that we cannot precisely calculate Δ𝐺𝐴 or Δ𝐺𝐶

since CGMs and pumps are prone to measurement errors.
To account for these errors under standard use, we enforce
error bounds on readings from CGMs [29, 64] and records
from pumps [79] under standard conditions. Based on these
bounds, we check the following condition on the BioKernel’s
current estimate of insulin sensitivity:

𝑆 ≤
0.9 ·𝐺𝑀

𝑡+Δ𝑡 − 1.1 ·𝐺𝑀
𝑡 +𝑇

𝐵 · Δ𝑡 − 0.99 · Δ𝐼𝑂𝐵𝑀 + 0.01 · Σ𝐼 𝑀
𝑖

(2)

Here, 𝑆 is the BioKernel’s estimate of the user’s insulin sen-
sitivity, 𝐺𝑀

𝑡 and 𝐺𝑀
𝑡+Δ𝑡 are readings from the CGM, Δ𝐼𝑂𝐵𝑀

and Σ𝐼𝑀𝑖 are calculated from the insulin doses recorded by the
pump, Δ𝑡 denotes the 30 minute window, and 𝐵 is the user’s
basal rate, a physiological parameter that often remains sta-
ble for days and is less prone to change than insulin sensi-
tivity [46]. We refer to this condition as the implementation
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Figure 4. GlucOS predicts hypoglycemia and notifies the
user before it happens so they can proactively prevent it.

invariant and use formal methods to prove that violations
to this condition imply violations to the biological invari-
ant (Section 7). Since all quantities in the implementational
invariant are observable, we shut off insulin delivery when
it is violated. We show how to adopt mathematical models
from the literature [7, 69] to derive the implementational
invariant in Appendix B.
We resume normal execution if the implementational in-

variant goes back to being satisfied within two hours, based
on clinical guidance for exercise for people living with T1D
[14, 37]. If it remains violated for more than two hours, we
alert the user and transition to manual insulin delivery.
Appendix G discusses the less dangerous scenario when

the actual change in glucose is higher than the calculated
change.

6 Last line of defense: Humans
In this section, we describe our design and implementation
for incorporating humans as a critical component of our
multi-layered security system. While our algorithmic secu-
rity mechanism and biological invariant defenses form the
primary barriers against attacks, humans serve as the last line
of defense, to take corrective action against hypoglycemia.
We discuss our most interesting findings around user pref-
erences and the architectural iterations to our design from
real-world experiences.

6.1 Predictive alerts for humans
When an individual’s glucose levels are not within the range
of healthy values, they need to intervene to bring them back
in range. Low glucose, or hypoglycemia, occurs from too
much insulin, and there is no way to remove insulin that
the automated insulin delivery system has already delivered.
To recover from hypoglycemia, people need to eat sugar.
Given that people with T1D are already active participants
in managing diabetes, we focus on how we can use them to
create a more comprehensive security system.
We use predictive yet deterministic mobile notifications

to alert people about impending hypoglycemia before it hap-
pens (Figure 4). We focus on hypoglycemia since it presents

the most immediate and dangerous risk. Alerts for hypo-
glycemia ae not new. All CGM software comes with non-
predictive hypoglycemia alerts by default [2] and glucose
prediction algorithms have been well covered in the litera-
ture [11, 68, 74]. Our contribution is using predictive alerts
before someone reaches hypoglycemia as a security defense.
In a user study (Section 10.4), we reduced the amount of

time six people spent in hypoglycemia as a result of using
GlucOS, despite them already having CGM alerts set up prior
to our study. We highlight that we did not conduct our user
study in a controlled environment, but had participants use
our app for predictive alerts as they managed their diabetes
in the real world. We also highlight that The number of
participants in our study is also roughly consistent with
recent human factors in computing research [12, 19, 43, 73].
Our results show that predictive alerts can be effective as a
security measure against hypoglycemia.
Using a simple and deterministic algorithm is important

since it runs as a part of our trusted computing base. Algo-
rithmically, we predict hypoglycemia using linear regression
over the last 20 minutes of CGM readings and extrapolate for-
ward 15 minutes. We trigger alerts if our prediction crossed
the hypoglycemia threshold in the next 15 minutes.
The most interesting finding from our study was that

personalization was important. We provided people with
the ability to set the prediction threshold and specify how
often they wanted the alert to repeat while they remained in
hypoglycemia. Five of the six participants customized their
alerts and the remaining participant noted that the default
values we picked coincided with their alerting preferences.
In our first implementation we did not provide the ability to
customize their settings and we tried to make the usability
vs security tradeoff algorithmically and automatically. But in
the end, simplifying the system to enable the personalization
of alerting policy was important for our participants.

Our finding has the potential to have broader implications
for security in healthcare systems. Often, security systems
favor uniformity and consistency [24, 28], but when manag-
ing people’s health we found that allowing people to balance
alert fatigue and security increased engagement and poten-
tially increased protection, based on each individual’s needs.

6.2 Architectural implications
One interesting design iteration we made was moving the
alerting logic into the BioKernel itself. In our first design,
consistent with our separation principles, the alerting logic
resided in a separate app. This alerting app learned the state
of the system using our cloud-based event logging system.
However, one of our participants went on a canoeing trip
and was disconnected from the internet, so they could not
get alerts. Ideally iOS would provide inter-process communi-
cation mechanisms to pass data from the BioKernel directly
to the alerting app, but iOS does not have the appropriate
APIs for this style of communication. Thus, we moved the
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alerting logic into the BioKernel, violating our principle of
separation, but enabling our users to get alerts even when
they are disconnected from the internet.

Moving the alerting logic into the BioKernel did have secu-
rity implications. It adds complexity to our trusted comput-
ing base, but we carefully manage this tradeoff. We minimize
the added complexity by using traditional, well-understood
algorithms for prediction rather than complex ML models
and reuse existing functionality within the BioKernel when
possible to keep the implementation simple. This approach
allowed us to maintain a high level of confidence in the
security and correctness of our alerting system while still
providing the necessary functionality.

7 Formal verification
We formally verify the most critical components of GlucOS
to prevent unexpected and undesired outcomes [66]. Specifi-
cally, we verify the implementation for: (1) delivering bolus
insulin doses (a single dose delivered immediately), (2) de-
livering basal insulin doses (multiple doses delivered at a
constant rate over a specified time period), (3) clamping in-
sulin doses using the reactive safe model, and (4) enforcing
the biological invariant. We consider these components to
be the most critical since they implement our security mech-
anisms and directly control insulin delivery.

Formally verifying our GlucOS’s implementation in Swift
presented an interesting challenge since automatic trans-
lators do not exist between Swift and languages for veri-
fication, such as Dafny. While automatic translators exist
between Dafny and other languages (such as C) we could not
pick those languages over Swift for implementation. This
is because Swify provides the most support to build iOS ap-
plications and our goal was to build a complete automated
insulin delivery application for real-world use.

To overcome this limitation, we manually ported our Swift
implementation to Dafny. While manual translation is prone
to human error, we took important steps to reduce the likeli-
hood of such errors. Concretely, we ported our Swift code
line-by-line to Dafny, preserved variable and function names
across implementations [20], and wrote unit tests for each
function in both languages to ensure behavioral consistency.
We establish invariants among the aforementioned criti-

cal components along the insulin delivery path [66]. These
invariants enforce critical constraints such as maintaining
appropriate units insulin doses, disallowing immediately
successive bolus doses, ensuring basal doses match doses
supported by the pump etc. Collectively these invariants are
important to ensure the expected safe operation of the BioK-
ernel. We discover 9 bugs in our original implementation by
verifying 31 invariants across 8 functions. Other than the
biological invariant (Section 5), some of our other invariants
enforced that there should be a gap of at least 4.2 minutes
between bolus doses, the amount of insulin on board should

also take into account the insulin from basal doses etc. We
list all our invariants and bugs in Appendix F.
From our experience with formal verification, we report

two key takeaways about our implementation for secure
automated insulin delivery. First, we were able to prove the
correctness of even those components that involve unobserv-
able quantities (such as the user’s true physiological state in
the biological invariant) under standard operation. Second,
while we expected most bugs to reside within the imple-
mentation of core algorithms, they were fully concentrated
among peripheral components such as user settings.

7.1 Capturing true physiological state
Glucose readings from CGMs and insulin doses recorded
from pumps do not reflect the user’s true physiological state.
This is because CGMs and pumps are subject to measurement
errors, making precise glucose concentrations and insulin
doses unavailable in Swift.

Tomodel this discrepancy, we use ghost variables in Dafny
[44] to represent the true glucose values and insulin doses.
We then introduce device invariants that bound the maxi-
mum measurement error within standard use, i.e., 10% for
CGMs [29, 64] and 1% for pumps [79]. We enforce these
bounds as preconditions when verifying the implementation
of all our core components. Most importantly, we proved the
correctness of the implementational invariant (Equation (2)
in Section 5) to verify the biological invariant (Equation (1)
in Section5 as a post condition in Dafny).

7.2 Discovering bugs outside the core algorithms
7 out of the 9 bugs we discovered with formal verification
were related to issuing insulin delivery commands with in-
valid parameters. With these bugs, users could specify nega-
tive amounts of insulin for basal and bolus doses, set 0-second
duration for basal doses, allowing the time to stop a basal
dose to be preced the start time of the dose etc. Other bugs
involved insfficient error handling, for example when disal-
lowing certain invalid bolus doses. We did not discover any
bugs in GlucOS’s core algorithms, such as those used by the
reactive safe model. We resolved bugs by updating our Swift
implementation to match the formally verified Dafny code.

8 Implementation
In our implementation, the BioKernel is an iOS app that con-
sists of 5.1k lines of code in our trusted computing base. It
communicates with a Dexcom G6 or G7 CGM and Omni-
pod DASH insulin pump via Bluetooth low energy, and runs
the core closed-loop algorithm. For the BioKernel, we use
the Swift programming language, the Actor abstraction for
data-race-free concurrency, and JSON files stored on disk to
capture persistent state. Although the BioKernel is a fully
featured and stand alone automated insulin delivery system,
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GlucOS uses an event logging system (Figure 1c) that en-
ables separate apps to extend functionality while remaining
isolated from the BioKernel.

9 Evaluation
In this section, we evaluate GlucOS’s algorithmic security
mechanism in simulation. In the next section (Section 10),
we evaluate all components of GlucOS in the real world.
We do not evaluate the biological invariant in simulation
since existing simulators do not support changes to human
physiology.

9.1 How effective is GlucOS’s algorithmic security
mechanism?

We evaluate GlucOS’s algorithmic security mechanism on
21 virtual humans from an FDA-approved simulator [7]. The
mechanism should protect users against untrusted models
that administer incorrect insulin doses (overdose or under-
dose), while minimally impeding algorithms that are efficient
at managing T1D. While subtle attacks are also possible, we
focus on extreme attacks in our evaluation since they have
the most adverse consequences.
We first run simulations with a predictive ML model in-

spired from prior research [53], without incorporating our
security mechanism to set a baseline of an effctive algorithm
in managing T1D. Then, in the same simulation scenarios,
we introduce an order of magnitude increase to the baseline
algorithm’s insulin doses to quantify the risks of untrusted
algorithms. We then repeat these experiments with our se-
curity mechanism to evaluate its impact.
The American Diabetes Association (ADA) recommends

that individuals with T1D spend at least 70% of their time in
the range (TIR) of 70-180 mg/dl to remain healthy [6, 26, 54].
Glucose levels less than 70 mg/dl (hypoglycemia) put indi-
viduals at risk for acute complications like impaired con-
sciousness, seizure, and death, while levels greater than 180
mg/dl (hyperglycemia) increase risks for long-term vascular
damage. We use TIR as our metric in these evaluations.

9.1.1 Without algorithmic security mechanism. Pre-
dictive ML model baseline With the predictive ML model,
we followed all ML best practices in carefully tuning hyperpa-
rameters and evaluating the model on simulation scenarios
that were different from those used in training. Figure 5
shows the average proportion of time spent in the recom-
mended healthy range (TIR) by virtual humans from different
age groups when employing the predictive ML model. We
see that individuals across all groups spend over 85% of their
time in range compared to 77% when using only the reactive
safe model. These results provide a baseline for a predictive
algorithm that is effective in managing T1D.
Incorrect ML dosing In this section, we discuss an ex-

periment with a malicious algorithm that intentionally doses
too much insulin. Concretely, our malicious algorithm doses

Reactive TIR with TIR with
safe predictive clamped

Age group model ML model ML model
Adults 88.25% 93.49% 92.88%

Adolescents 81.98% 85.23% 82.38%
Children 77.31% 86.6% 85.42%

Figure 5. Average proportion of time spent in range (TIR)
across 21 virtual humans with a reactive safe model, a pre-
dictive ML model, and clamping the predictive ML with the
reactive safe model for security.

Figure 6. Variation in CGM readings for three virtual hu-
mans when running a predictive ML algorithm that inten-
tionally doses ten times the amount of the required insulin.
The CGM readings staying below the hypoglycemic bound
would have likely been fatal to all three individuals.

ten times the amount of insulin computed by the previously
described predictive MLmodel. We ran this algorithm within
the simulator on the same virtual humans on the same sce-
narios as the previous experiment.

Figure 6 shows the CGM readings on three randomly cho-
sen virtual humans. The readings fully go below the hyp-
ogycemic bound, which would have killed them in the real
world. Across all virtual humans, we see an average drop
in TIR from 88.44% to 0% when dosing too much insulin.
Correspondingly, we observe an average increase in the time
spent in hypoglycemia from 0% to 100%. We report similar
results with intentional underdosing in Appendix C. These
results demonstrate the need for algorithmic security.

9.1.2 With algorithmic security mechanism. Impact
on incorrect dosing.We repeat experiments from the pre-
vious section with the same simulation scenarios. We run
the same malicous model to overdose insulin, but also run
our reactive safe model (Section 4).
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Figure 7. Variation in CGM readings for three virtual hu-
mans when clamping an algorithm that intentionally tries
to dose ten times the amount of the required insulin. On
average, CGM readings stay in range over 70% of the time.

Figure 7 show CGM readings on the same three virtual
humans on the same scenarios as the experiment in the pre-
vious section. We see that all of them spend over 70% of their
time in the healthy range, showing that GlucOS protects in-
dividuals from malicious overdosing. On average, across all
virtual humans, we only see a drop in TIR from 88.44% with
correct dosing to 78.22%when employing GlucOSwhile over-
dosing. We also report similar results on experiments with a
malicious algorithm that underdoses insulin in Appendix C.

While the times spent in range are less than those of cor-
rect dosing, the impact of incorrect dosing is significantly
dampenedwith individuals spending the recommended amount
of time in the healthy range, despite active attack.
Impact on effective benign algorithms.We evaluate

the impact of GlucOS’s algorithmic security mechanism on
benign algorithms that are effective in managing T1D such as
the baseline predictive ML model. We repeat the experiment
of running the predictive ML model on all virtual humans in
the same scenarios with the same parameters for the clamps
and reactive model used to evaluate incorrect dosing.
Comparing data in Figure 5 we see that there is only a

slight drop in the average proportion of time spent in range
by virtual humans across all age groups when employing
GlucOS’s algorithmic security mechanism. When employing
the reactive safe model as is to calculate insulin doses, we
report an average TIR of 82.48% which is lower than the aver-
age TIR of 86.84% observed when running the predictive ML
model with GlucOS’s security mechanism. This shows that
GlucOS’s algorithmic security mechanism does not impede
effective T1D management.

10 Using GlucOS in the real world
In this section, we report on our experiences working with
seven individuals using GlucOS to help manage their T1D.

Six people are students who only used the predictive alerting
feature of the BioKernel (Section 6) for two months, from
June 2024 - August 2024. One individual, whowewill call Bob,
has been using the full GlucOS system since November 2023
for insulin delivery and predictive alerting. The number of
participants in our study is roughly consistent with existing
research in human factors in computing [12, 19, 43, 73]. More
importantly, we report results on indiviuals using GlucOS to
manage their diabetes in the real world.

10.1 Ethical considerations
In this section, we outline the steps we take to ensure that
we uphold high ethical standards and ensure that the people
using our system, are safe. Our user study for the six students
was approved by our university’s IRB. Bob’s use GlucOS was
determined by our university’s IRB to be “self evaluation”
and exempt from IRB.
One of the co-authors of this paper is a board-certified

Endocrinologist, who specializes in T1D. They designed the
safety protocol, which defines the specific criteria we use
to stop the study, if needed. Appendix A includes a more
detailed discussion of our ethics and safety protocols.

10.2 Is an ML-based closed-loop system safe and
effective in practice?

Bob has been using GlucOS in a closed loop since November
23rd, 2023. From November 23 to January 28th, 2024 we used
our reactive safe model to make control decisions. Starting
on January 28th Bob started to use our predictive ML model
for periods of time to get used to the new system, and then
starting on January 31st, 2024 starting using our predictive
ML model exclusively. We report on one week’s worth of
data from the predictive ML model starting on January 31st
ending on February 6th, 2024.

Overall, Bob had the best results when using ML. His time
spent in range increased from 96.3% to 97.2%, and notably he
spent no time in hypoglycemia (below 70mg/dl), going down
from 0.67% when not using ML. More importantly, Bob’s
A1C, which captures his long-term glucose concentration,
dropped to 5.8% as a result of using GlucOS. This result
demonstrates a significant health outcome since it matches
up to non-diabetics who have an A1C of 5.6% or lower.

Next, we measure how often the predictive ML model was
responsible for programming the pump vs our reactive safe
model. For the one week when Bob was using the predictive
ML model, 33.0% of the time both the predictive ML model
and reactive safe model issued the same commands, 39.9% of
the time the BioKernel used the predictive ML model’s com-
mands, and 27.1% of the time the BioKernel used the reactive
safe model’s commands. The reactive safe model having to
take over to issue commands is not surprising since ML mod-
els are not immune to mispredictions, especially when taking
the variability of the real world into account. We believe that
this distribution represents a suitable balance for providing
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the ML with enough flexibility to improve outcomes, while
having tight enough bounds to limit potential damage from
bad or malicious ML predictions.

As of July 2025, Bob has swapped the predictive ML model
with a rule-based model similar to OpenAPS’ model de-
scribed in Section 1.

10.3 Do biological invariant violations trigger in
practice?

To determine if biological invariant violations trigger in prac-
tice, we review 90 days of data for Bob, from May 29th, 2024
to August 27th, 2024. During this period of time, biological
invariant violations occurred 1.6k times, or 9.0% of the time.
Of these violations there were 49 sequences of 30 minutes
or longer with the longest sequence being 65 minutes.
These results suggest that although natural variations in

glucose metabolism do lead to biological invariant violations,
none of them were long enough to trigger our most severe
action of transitioning to manual insulin dosing after two
hours. We manually reviewed one weeks worth of Bob’s data
and discovered that all five violations within this period were
caused by exercise.

10.4 Are predictive alerts useful for security?
Tomeasure predictive alerts as a security mechanism to avert
hypoglycemia (Section 6), we recruited six students who live
with T1D and had them use the GlucOS predictive alerts to
complement their default CGM alerts. Our primary metric
is time spent below range (i.e., below 70 mg/dl), where a
decrease in the amount of time spent in hypoglycemia sug-
gests that predictive alerts are effective to empower people
to mitigate the most immediate and dangerous security risks.

For the two month study, our participants decreased their
average time in hypoglycemia from 2.7% down to 1.6%, and
all individuals experienced a decrease in the amount of time
spent in hypoglycemia. For context, participants in a state-of-
the-art automated insulin delivery clinical trial experienced
a decrease of time in hypoglycemia of 0.9% [16], showing
that our 1.1% decrease is substantial.

We also report positive feedback from all participants dur-
ing monthly interviews. Other than customization, partici-
pants acknowledged the importance of being able to reason
about the alerts once we explained that we used linear re-
gression for prediction. They reported that this helped forge
trust in our system which in turn reduced their cognitive
load with diabetes. All participants have continued using
our system even after the study’s conclusion.

Overall, our results show how predictive alerts are useful
for automated insulin delivery.

10.5 How does the BioKernel perform?
We evaluate two aspects of GlucOS’s system performance in
the real world. First, we measure how long our closed-loop
algorithm takes to run and second, we count how often the

closed-loop algorithm runs successfully end-to-end. We use
Bob’s iPhone 14 to collect all of the data we show and these
numbers are averages across the entire eleven month period.

On average, the BioKernel spends 4.3s running the closed
loop algorithm, where almost half of that time is dominated
by CGM and pump communications. Of the components
within the closed-loop algorithm, the ML predictions take
2.2s on average and the safety logic takes 19ms (0.019s).
Since the system runs in the background, we believe that
iOS runs the device with reduced computational capacity
to save power. But overall, 4.3s of wall-clock time for every
five minutes our closed-loop algorithm runs with only a
tiny fraction of that coming from our safety logic represents
practical system performance.

For successful closed-loop end-to-end execution, over the
evaluation period the closed-loop algorithm runs success-
fully 96.5% of the time, with 2.1% of the runs failing due to
pump communication, which is our largest class of failure.

11 Related work
The complexity of automated insulin delivery systems and
the fact that they make real-time healthcare decisions, makes
their security paramount. Current research on security for
these systems focuses primarily on evaluating algorithms
using simulations [75, 76]. Our experience shows that when
faced with the practical challenges of real systems, algo-
rithms designed in simulations often prove insufficient or
inapplicable. These real-world complexities require a fun-
damentally different approach to designing security for au-
tomated insulin delivery systems. GlucOS moves beyond
simulation and tackles the challenges of real-world systems.

Previous research has looked at the security of implanted
medical devices in general [17, 35, 60], in addition to looking
at insulin pumps in particular [45, 57], with more recent
work looking at providing improved security [9, 50]. Also,
recent work has looked at applying formalmethods to insulin
pumps for high assurance [56]. They focus on devices and
their communication channels. With GlucOS, we assume
that these devices are secure and focus on automated insulin
delivery software.

12 Conclusion
The design of GlucOS, while grounded in established OS
and security principles, incorporates several non-obvious
elements that emerged from our deep engagement with the
problem domain and real-world testing.
First, our approach to algorithmic security used classic

security techniques, like reference monitors and the Sim-
plex architecture. However, our novel insight around all
algorithms dosing the same amount of insulin led to the
application of these classic techniques. Plus, from our explo-
ration, the most interesting part was not the use ML, but the
principle of repurposing reactive models for security.

11



Second, the biological invariant emerged as a key check
in our system, addressing a blind spot in typical simulations
that ignore changing human dynamics. This forced us to
develop novel formal methods to handle scenarios where
our glucose metabolism models could be drastically wrong.
Third, our approach to human interaction in the system

was nuanced. We found that simply alerting humans was not
sufficient. For security alerts, personalization, customization,
and simplicity was important.

These non-obvious design decisions underscore the com-
plexity of creating a truly trustworthy automated insulin
delivery system. They reflect the value of combining theoret-
ical security principles with practical, real-world testing and
domain-specific knowledge. This interdisciplinary research
drew on deep expertise from operating systems, computer
security, medicine, and ethics to create a practical system.
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A Ethical and safety considerations
One individual, who we will call Bob, used GlucOS for 9
months. Six university students also used the predictive
alerts from GlucOS for 2 months. We put in place a protocol
where we would stop our study and ask people to stop using
our system and revert back to their previous management
regime. In our protocol, we have formal in-person meetings
with Bob every week to check his data and make sure that
he is not incurring risk as a result of using GlucOS, and
weekly surveys for the six students, plus monthly meetings.
We would have stopped our study if any of the following
conditions occurred:

• Excessive hypoglycemia. We define excessive hypo-
glycemia as having spent 8% or more of time during
a week with CGM readings below 70 mg/dl or more
than 1% below 54 mg/dl. These amounts of time spent
in hypoglycemia would have represented a significant
increase in time spent in hypoglycemia for partici-
pants.

• Insufficient CGM data. If they had less than 70% of
the time during a week with CGM readings, then the
lack of CGM data would represent a decrease for the
participants.

• Insufficient closed-loop runs.We designed GlucOS to
run closed-loop algorithms every five minutes, or 288
times per day. If Bob had a day where our closed-
loop algorithm ran successfully less than 200 times, it
would represent a fundamental flaw in the system.

• Serious complications due to diabetes. Serious complica-
tions include any hospitalization for diabetes related
issues, severe hypoglycemia where a participant was
unable to recover from hypoglycemia themselves and
had to get help from someone else, diabetic ketoaci-
dosis, or seizure.

• Newmedical diagnosis requiring significant attention. If
anyone had received a new medical diagnosis during
the study, the study would have had the potential to
be a distraction for participants.

• Newmental health diagnosis. If anyonewere struggling
with mental health during the study, the study would
have the potential to be a distraction.

In addition to our safety protocol, we followed best prac-
tices for ethical research to ensure that we conducted our
study ethically.

• IRB. Our study went through our university’s IRB pro-
cess, where the study including six university students
who used GlucOS’s alerting software was approved,
and our case study on Bob was determined to be “self
evaluation” and exempt from IRB.

• Informed consent.All participants went through a writ-
ten informed consent process.

• Data management. GlucOS does not store any person-
ally identifiable information and uses access control
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on our Google Cloud Platform infrastructure to en-
sure that only the authors of the paper can access this
anonymized data.

• Risk/benefit analysis.All participants are already living
with T1D and use CGMs and inject insulin, so they
already take on the risks inherent in managing T1D.
The benefits include improved control over their T1D.
There are risks in using experimental software, but
all participants continued to rely on their CGM alerts
as a last line of defense.

• Participant selection. We selected participants who
were university students living with T1D.

• Adverse event reporting. Had any participants experi-
enced adverse events during the study, we would have
reported it to our IRB for guidance and addressed it
according to our safety protocol.

• Communication. All surveys were done through our
university’s medical school infrastructure for private
communication with individuals.

Since Bob used the full GlucOS software, including for in-
sulin delivery, we included several other safety mechanisms:

• Bob increased the frequency of his visits to his En-
docrinologist while using the GlucOS software. He
went from yearly appointments to quarterly appoint-
ments.

• During the study, twice Bob got lab work based on
blood tests to provide an independent measure of his
overall metabolic health. This lab work helped to en-
sure that he was in good health and that there were
no hidden negative impacts from his use of GlucOS.

Overall, GlucOS had a large positive impact on the individ-
uals who used it. Bob’s lab-based A1C test (a blood test that
measures average glucose levels over time), which includes
his time using GlucOS, was 5.8%. That is nearly non-diabetic
levels of control – healthy individuals will have an A1C of
5.6% or lower. All of the students decreased the amount of
time spent in hypoglycemia. These results are profound for
the seven people using GlucOS, and it had a positive impact
on their health and quality of life.

Finally, Bob was a willing and enthusiastic user of the Glu-
cOS system. To be clear, Bob is not a graduate student who
was forced to use GlucOS so that his advisor could publish
a paper. Rather, Bob struggled with the cognitive load of
T1D management and wanted an automated insulin deliv-
ery system to offload part of the burden. However, he was
unwilling to use any of the other automated insulin delivery
systems out there due to concerns over their security. Bob
found that GlucOS, with its focus on security, correctness,
and simplicity, met his needs.

B Derving the implementational invariant
In this section, we show howwe derive the implementational
invariant from the biological invariant. We introduce the

following equations to capture the error bounds on CGMs
and pumps under standard conditions:

0.9 ·𝐺𝐴
𝑡 ≤ 𝐺𝑀

𝑡 ≤ 1.1 ·𝐺𝐴
𝑡 (3)

0.99 · 𝐼𝐴𝑡 ≤ 𝐼𝑀𝑡 ≤ 1.01 · 𝐼𝐴𝑡 (4)
Here, 𝐼𝑀𝑡 and 𝐺𝑀

𝑡 denote the measured insulin dose and
glucose concentration respectively at time 𝑡 , while 𝐼𝐴𝑡 and
𝐺𝐴
𝑡 represent their true values.
We now recall the biological invariant (Equation (1) in

Section 5):

Δ𝐺𝐶 − Δ𝐺𝐴 ≤ 𝑇, or Δ𝐺𝐶 −𝑇 ≤ Δ𝐺𝐴 (5)

Δ𝐺𝐴 =𝐺𝐴
𝑡+Δ𝑡 −𝐺𝐴

𝑡 is the actual drop in glucose over the
same period. We note that we do not know the value of Δ𝐺𝐴

since we cannot capture the user’s true glucose concentra-
tion.

Here, Δ𝐺𝐶 is the calculated drop in the user’s glucose over
period Δ𝑡 and 𝑇 is the clinical threshold of 30 mg/dl.

We adaptmathematical models from prior literature [7, 69]
to compute Δ𝐺𝐶 :

Δ𝐺𝐶 = 𝑆 · (𝐵 · Δ𝑡 − Δ𝐼𝑂𝐵𝐴 + Σ𝐼𝐴𝑖 ) (6)
where 𝑆 is the BioKernel’s estimate of the user’s insulin

sensitivity and 𝐵 is the user’s basal rate (a physiological pa-
rameter representing the amount of insulin required per hour
to absorb the background glucose produced by the body).
Basal rate does not change as frequently as the insulin sensi-
tivity and often remains stable for days [46]. Δ𝐼𝑂𝐵𝐴 captures
the change in the amount of insulin in the user’s body over
the period Δ𝑡 and Σ𝐼𝐴𝑖 is the sum of insulin doses delivered
over the same period. Δ𝐼𝑂𝐵𝐴 at time 𝑡 is calculated as the dot
product of insulin doses across the 6-hour window ending
at 𝑡 with coefficients from standard exponential curves. In
other words, both Δ𝐼𝑂𝐵𝐴 and Σ𝐼𝐴𝑖 depend on insulin doses
which cannot be captured precisely.

To account for these unknowns, we combine (3), (4), (5)
and (6) to get:

𝑆 ≤
0.9 ·𝐺𝑀

𝑡+Δ𝑡 − 1.1 ·𝐺𝑀
𝑡 +𝑇

𝐵 · Δ𝑡 − 0.99 · Δ𝐼𝑂𝐵𝑀 + 0.01 · Σ𝐼 𝑀
𝑖

(7)

Here, Δ𝐼𝑂𝐵𝑀 and Σ𝐼𝑀𝑖 are the measured equivalents of
Δ𝐼𝑂𝐵𝐴 and Σ𝐼𝑀𝑖 , recorded from the pump. We note that
Equation (7) is the implementational invariant(Equation (2)
in Section 5), thereby showing how we derive it from the
biological invariant.

C Evaluating algorithmic security when
intentionally underdosing insulin

We repeat the experiment described in Section 9.1, but in-
tentionally dose one-tenth the required amount of insulin.
This experiment represents an algorithm that intentionally
underdoses insulin as opposed to overdosing insulin. Figure
8 shows that the same virtual humans described in Section
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Figure 8. Variation in CGM readings for three virtual hu-
mans when running a predictive ML algorithm that inten-
tionally doses one-tenth the amount of the required insulin.
The CGM readings staying mostly above the hyperglycemic
bound would have had drastic health consequences in all
three individuals.
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Figure 9. Variation in CGM readings for three virtual hu-
mans when clamping an algorithm that intentionally tries
to dose one-tenth the amount of the required insulin. On
average, CGM readings stay in range over 70% of the time.

9.1 spend most of their time above the hyperglycemic bound
which would have led to severe health consequences in all
three individuals.

Figure 9 shows the same virtual humans in the same sim-
ulation scenarios with the same malicious algorithm dosing
one-tenth the required amount of insulin, but with GlucOS’s
algorithmic security mechanism enforced. We now see all
virtual humans spending over 70% of their time in the rec-
ommended healthy range.

D Driver security: Withstanding malicious
pump drivers

Pump drivers provide abstractions for insulin delivery ap-
plications to communicate with insulin pumps. Much like
traditional device drivers, they have complex implementa-
tions since they help accomplish a wide range of tasks includ-
ing pump setup/teardown, managing pump UX, handling
insulin delivery/suspension, managing pump errors, accu-
rately tracking insulin doses, and so on.
Given this complexity, there is a strong possibility for

bugs or vulnerabilities to be present in existing pump drivers.
These vulnerabilities can harm or even lead to the death of
individuals since pump drivers control insulin pumps. For
example, the user could be under risk of insulin overdose
if the pump driver inadvertently or intentionally issues the
same insulin dosing command twice.

Our goal is to protect users from inadvertent bugs in pump
drivers as well as malicious pump drivers. We introduce a
shim between the pump driver and the pump, which vali-
dates all communication between them.We design our mech-
anism to interpose on existing pump driver-pump commu-
nication instead of directly programming the pump. This
designs ensures that our trusted computing base remains
small and simple by not including complex pump driver
implementations. This design also provides flexibility with
altering or introducing new functionality to pump drivers.

Interestingly, to protect the individual, we had to overrule
our principle of not programming the pump in cases per-
taining to commands for canceling ongoing insulin delivery.
We could not directly adopt the design of other device dri-
ver security mechanisms [49, 65, 72] for our driver security
mechanism since these cases are specific to insulin pumps.

We focus on pump drivers because they are complex (14.5k
LoC), multi-threaded, event-driven, and use two-way com-
munication between the pump and the driver. In contrast,
CGM drivers are simple (1.9k LoC) and only read sensor
values from the device. In our future work, we will formally
verify CGM drivers using the same techniques we use for
the insulin delivery path (Section 7).

D.1 Driver security mechanism design
Figure 10 provides an overview of our driver security mech-
anism. The BioKernel registers high-level commands, like
“deliver 2U of insulin” with our driver security mechanism,
and sends them to the pump driver. The pump driver converts
these commands into I/O messages to program the pump.
The driver security mechanism then checks to make sure
that these I/O messages are consistent with the previously
registered high-level pump commands before forwarding
them to the pump hardware. We only validate commands
for insulin delivery since they pose the biggest threats to the
user. On detecting added, modified or dropped commands
from the pump driver, the driver security mechanism rejects
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Figure 10. We interpose on communications between the
pump driver and the pump to handle untrusted pump drivers.

further commands and transitions the system to manual in-
sulin delivery where the user takes control. We list insulin
message types pertaining to insulin delivery, pump setup
and UX in Figure 12.
Dropped commands pertaining to canceling ongoing in-

sulin delivery require separate consideration since excess
insulin is dangerous and cannot be withdrawn once it has
been delivered. Users will cancel insulin delivery if they acci-
dentally issued an insulin delivery command or incorrectly
set the insulin dosage. In cases where a malicious driver
drops a cancel command, the driver security mechanism
directly issues I/O messages to the pump to cancel insulin
delivery before transitioning the pump to a manual mode.
We make the tradeoff of increasing the size of our trusted
computing base to handle these cases in the interest of pro-
tecting the user. Fortunately, there are only two commands
to cancel insulin delivery in our current implementation, so
the increase to our trusted computing base is small.

D.2 Does GlucOS ensure pump operation while
overcoming malicious pump drivers?

We evaluate the driver security mechanism in allowing com-
munications from a benign pump driver to go through while
blocking manipulated communications from a malicious
pump driver.
Malicious pump drivers We modified the OmniBLE

pump driver [4] to intentionally add, drop and modify in-
sulin commands sent to an Omnipod DASH insulin pump
[3] attached to a stuffed animal (Figure 11). We report that
the driver security mechanism detected all manipulated com-
mands, resulting in 0 false negatives.

Benign pump drivers For one week, we logged messages
passed between the BioKernel, the unmodified OmniBLE
pump driver and the pump on an individual running GlucOS

Figure 11.We attached an Omnipod DASH insulin pump to
a stuffed animal and modified the OmniB LE pump driver to
intentionally add, drop and modify insulin commands. Our
driver security mec hanism detected all manipulations.

Message Message Message
name type description

Insulin Request insulin delivery
getStatus delivery status from the pump

Insulin Insulin dose delivery
statusResponse delivery information from the pump

Insulin Insulin dose delivery
errorResponse delivery error from the pump

Insulin Set default rate of
setBasalSchedule delivery insulin delivery

Insulin Set temporary rate
setTempBasal delivery of insulin delivery

Insulin
bolus delivery Deliver instant insulin dose

Insulin
cancelDelivery delivery Cancel insulin delivery

setupPod Setup Setup a new pump
assignAddress Setup Pair pump with phone
deactivatePod Setup Teardown pump

acknowledgeAlert UX Acknowledge alert from pump
configureAlerts UX Configure alerts from pump
beepConfig UX Configure pump beeps

Figure 12. Types of messages exchanged between a pump
driver and pump pertaining to delivery, setup and UX.

(Section 10). We report 100% consistency between all com-
mands showing that GlucOS’s driver security mechanism
does not incur any false positives.
These results show that GlucOS can ensure pump opera-

tion while withstanding attacks from malicious drivers.
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Figure 13. GlucOS’s CGM state machine to handle missing
readings from CGMs.

Figure 14. GlucOS’s state machine to transition users to
the safest manual dosing state when losing trust in insulin
delivery (i.e., with a buggy or malicious pump driver) or
when the biological invariant is not satisfied.

E Runtime failure management
In this section, we describe GlucOS’s state machine that com-
bines its security components, i.e., algorithmic security (Sec-
tion 4), driver security (Section D) and end-to-end security
(Section 5) together to protect users in light of their corre-
sponding failures.

GlucOS’s state machine consists of three operating states:
(1) ML with safety operating in closed loop, (2) reactive safe
model operating in closed loop and (3) manual dosing in
closed loop. ML provides the tightest level of control in man-
aging glucose but poses the largest immediate threat from
excess insulin since it preemptively injects insulin by an-
ticipating rise in glucose. The reactive safe model provides
slightly lesser control, but poses milder immediate threat
since it only injects insulin to account for measured excess
glucose. Manual dosing offers the least amount of control
but poses no threat since it only injects the minimum insulin
needed for sustenance. GlucOS predominantly operates in
the state running ML (with safety) in closed loop.

We transition to the safest manual dosing state when we
do not trust insulin delivery (i.e., with a buggy or malicious
pump driver). We also transition to the safest manual opera-
tion when the biological invariant is not satisfied to ensure
that we do not risk the possibility of removing too much
glucose from our insulin doses. If we end up in the manual
dosing state, we enforce that only manual user intervention
can transition back to other states. We visualize these state
transitions in Figure 14.
Inability to retrieve readings from a CGM also count as

runtime failures. However, these failures are easier to handle.
Since ML needs a stream of CGM readings as input, we

transition from ML to the reactive safe model if we don’t
receive an input from the CGM. As long as the number of
missing CGM readings is low (say, within 30 minutes), we
can interpolate to account for the missing readings to oper-
ate the reactive safe model. Once we have too many missing
CGM readings that make us lose confidence in interpolation,
we transition to manual dosing. From manual dosing, we
transition back to the reactive safe model on receiving a
CGM reading. Lastly, from the reactive safe model, we tran-
sition back to ML once we have enough CGM readings that
are required by the ML model. Figure 13 summarizes these
transitions.

F Formal verification: invariants and bugs
In this section, we list the invariants used to formally verify
critical functions of GlucOS. Figure 15 lists the bugs we found
and fixed during formal verification.

F.1 Invariants
The MicroBolusing function ensures that micro boluses are
always administered at safe time intervals while making sure
that they are actually needed (the glucose level of the person
is in fact high).

• Ensure no micro bolus in the last 4.2 minutes.
• Ensure glucose is at least 20 mg/dl above the target
glucose level.

• Ensure predicted glucose is greater than the current
glucose level minus 2.

• Ensure micro bolus amount is within the allowed
range.

• Ensure bolus amount is rounded correctly if pump-
Manager is available.

We assume that the BioKernel is the only software issuing
bolus commands.
The GuardRails function is responsible for ensuring a

safe basal rate value, mindful of the user’s glucose levels. It
enforces several invariants:

• Ensure the result of rounding newBasalRateRaw to the
supported basal rate is within the allowable range.

• Ensure the new basal rate does not exceed the maxi-
mum basal rate in the settings.

18



Bug Type Description
Division by Zero Error Potential division by zero error when calculating insulin dosage if the

user entered the same start and end time for a basal rate, resulting in a
duration of zero.

Negative Value Handling The insulin dosing calculation for microbolusing and basal rate erro-
neously allowed negative values.

Out-of-Range Value Handling The microbolusing function failed to handle cases where one of its
calculation components was out of the expected range or resulted in a
negative value.

Violation of Intended Postcondition The function responsible for setting the insulin delivery duration vio-
lated its intended postcondition by allowing the end date to be earlier
than the start date.

Violation of Intended Postcondition The function responsible for calculating the total insulin dose violated
its intended postcondition by returning an incorrect upper bound value
under certain conditions.

Violation of Intended Postcondition The function responsible for updating the user’s insulin dosage violated
its intended postcondition by failing to validate the input parameters
correctly.

Violation of Intended Postcondition The function responsible for calculation of ‘unitsDelivered‘ needed addi-
tional postconditions accurately reflect the amount of insulin delivered
over the time gap.

Lack of Error Handling Additional error handling was added to insulin delivered over a time
segment function to gracefully catch undesirable state.

Lack of Error Handling Additional error handling was added to microbolusing function to grace-
fully catch undesirable states.

Figure 15. Report of bugs fixed by formally verifying GlucOS.

• Ensure the new basal rate is not negative.
• Ensure that if either the current glucose level or the

predicted glucose level falls below or equals the shut-
off glucose threshold, the new basal rate is set to 0.0.

The function operates under the assumption that all paths
must go through the guard rails, with a specific evaluation
comparing with the pump invariant. Additionally, it assumes
the integrity of settings, trusting the underlying OS and file
system and storage stack.

The insulinDeliveredForSegment function ensures that in-
tersectionStart is not greater than intersectionEnd when com-
puting the intersection between self.startDate and self.endDate
with startDate and endDate.

• Verifies that intersectionDuration is non-negative and
does not exceed doseDuration, ensuring it accurately
reflects the overlapping time duration.

• Checks that the units of insulin (units) used for calcu-
lation are either deliveredUnits or programmedUnits,
ensuring consistency in how the insulin amount is
derived.

• Verifies that the computation (units * intersectionDura-
tion / doseDuration) accurately represents the amount
of insulin delivered during the intersection period.

The function assumes that the input parameters (self.startDate,
self.endDate, startDate, endDate, units, and doseDuration) are
valid and within the expected ranges. It is also assumed that
the underlying data structures and calculations are accurate
and consistent throughout the system.

The CreateBasalDose function requires a time gap greater
than 1 second to proceed and return a valid DoseEntry.

• Ensures that the calculation of basalRatePerSecond
from basalRate accurately represents the rate of in-
sulin delivery per second.

• Ensures that the calculation of unitsDelivered accu-
rately reflects the amount of insulin delivered over
the time gap.

• The DoseEntry constructed should have consistent at-
tributes and adhere to the specified type, units (unitsPer-
Hour), and mutability (false).

The function assumes that the input parameters (basalRate,
startDate, and endDate) are valid and within the expected
ranges. It also assumes that the underlying time calculations
and conversions between units are accurate and consistent.

The inferBasalDoses function ensures that basalDoses con-
tains only DoseEntry instances where type is .tempBasal,
.resume, or .suspend, sorted in ascending order by startDate.
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• InsulinType should be determined correctly based on
the last .tempBasal or .bolus type dose in doses, default-
ing to .humalog if none are found.

• Each inferred basal dose added to inferredBasalDoses
must be created using the createBasalDose function
with valid parameters and added in the correct chrono-
logical order.

• If the last dose in basalDoses is not of type .suspend, a
valid basal dose must be inferred from its endDate to
at.

The function assumes that the input parameters (doses, basal-
Doses, at, and pumpRecordsBasalProfileStartEvents) are valid
and within the expected ranges. It also assumes the correct-
ness of the underlying data structures and the createBasal-
Dose function.

The insulinOnBoard function ensures that doses contains
unique and valid DoseEntry instances filtered up to at.

• The total iob should accurately represent the cumu-
lative insulin on board from all valid dose entries in
doses.

• basalDoses should contain inferred basal doses that
accurately reflect insulin on board contributions when
pumpRecordsBasalProfileStartEvents is false.

• The final return value of insulinOnBoard should be the
sum of iob and basalIob, representing the total insulin
on board at at.

The function assumes that the input parameters (doses, at,
and pumpRecordsBasalProfileStartEvents) are valid andwithin
the expected ranges. It also assumes the correctness of the
underlying data structures and the inferBasalDoses function.

The ActiveBolus function ensures that data is read consis-
tently from disk before proceeding with any operations.

• Verifies that DeduplicatedDoses(events: eventLog, at:
at) correctly filters out duplicates and retains only
relevant dose entries up to at.

• Ensures that doses.filter accurately selects bolus en-
tries that were active at the specified at.

• Verifies that doses.last correctly returns the last active
bolus entry, ensuring it is non-null if a bolus exists
within the specified criteria.

The function assumes that the input parameters (eventLog
and at) are valid and within the expected ranges. It also as-
sumes the correctness of the underlying data structures and
the DeduplicatedDoses function, as well as the consistency
and reliability of disk read operations.

The TempBasal (Safety Clamps) function ensures that the
events array includes only events from safetyStates that fall
within the time range [start - duration, at).

• Verifies that the historicalMlInsulin value represents
the total units of insulin delivered by the machine
learning system over the specified time horizon.

• Ensures that the machine learning and safety temp
basal rates are correctly converted to units of insulin
based on the given duration.

• Ensures that the upper and lower bounds for insulin
units are correctly adjusted based on historicalMlIn-
sulin.

• Ensures that the difference between machine learn-
ing and safety temp basal units is correctly clamped
within the calculated bounds.

• The clamped delta units should be converted back to
a temp basal rate and added to the safety temp basal
rate.

• The returned SafetyTempBasal object should correctly
encapsulate the adjusted temp basal rate and historical
machine learning insulin.

The function assumes that the input parameters (safetyS-
tates, start, duration, at, mlTempBasal, safetyTempBasal, and
lastHistoricalMlInsulin) are valid and within the expected
ranges. It also assumes the correctness of the underlying
data structures and the conversion functions between units,
as well as the proper configuration and appropriateness of
the safety clamp parameters and thresholds for the user.

G Scenarios when the user’s insulin
sensitivity is lower than the BioKernel’s
estimate

We do not take any action when the actual change in the
user’s glucose is higher than the calculated change. Higher
actual glucose does not necessarily reflect a shift in the user’s
physiological state (decreased insulin sensitivity) since it can
also result from digestion when the user consumes food.
Further, even if the user is less sensitive to insulin, their
glucose absorption would be slower, which does not pose
them with an immediate threat (hyperglycemia).
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