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Abstract
The computer systems security arms race between at-
tackers and defenders has largely taken place in the do-
main of software systems, but as hardware complexity
and design processes have evolved, novel and potent
hardware-based security threats are now possible. This
paper presents a hybrid hardware/software approach to
defending against malicious hardware.

We propose BlueChip, a defensive strategy that has
both a design-time component and a runtime component.
During the design verification phase, BlueChip invokes
a new technique, unused circuit identification (UCI),
to identify suspicious circuitry—those circuits not used
or otherwise activated by any of the design verification
tests. BlueChip removes the suspicious circuitry and
replaces it with exception generation hardware. The ex-
ception handler software is responsible for providing for-
ward progress by emulating the effect of the exception-
generating instruction in software, effectively providing
a detour around suspicious hardware. In our experi-
ments, BlueChip is able to prevent all hardware attacks
we evaluate while incurring a small runtime overhead.

1 Introduction
Modern hardware design processes closely resemble the
software design process. Hardware designs consist of
millions of lines of code and often leverage libraries,
toolkits, and components from multiple vendors. These
designs are then “compiled” (synthesized) for fabrica-
tion. As with software, the growing complexity of
hardware designs creates opportunities for hardware to
become a vehicle for malice. Recent work has demon-
strated that small malicious modifications to a hardware-
level design can compromise the security of the entire
computing system [22].

Malicious hardware has two key properties that
make it even more damaging than malicious software.
First, hardware presents a more persistent attack vector.
Whereas software vulnerabilities can be fixed via soft-
ware update patches or reimaging, fixing well-crafted

hardware-level vulnerabilities would likely require phys-
ically replacing the compromised hardware components.
A hardware recall similar to Intel’s Pentium FDIV bug
(which cost 500 million dollars to recall five million
chips) has been estimated to cost many billions of dollars
today [7]. Furthermore, the skill required to replace hard-
ware and the rise of deeply embedded systems ensure
that vulnerable systems will remain in active use after the
discovery of the vulnerability. Second, hardware is the
lowest layer in the computer system, providing malicious
hardware with control over the software running above.
This low-level control enables sophisticated and stealthy
attacks aimed at evading software-based defenses.

Such an attack might use a special, or unlikely, event to
trigger deeply buried malicious logic which was inserted
during design time. For example, attackers might intro-
duce a sequence of bytes into the hardware that activates
the malicious logic. This logic might escalate privileges,
turn off access control checks, or execute arbitrary in-
structions, providing a path for the malefactor to take
control of the machine. The malicious hardware thus
provides a foothold for subsequent system-level attacks.

In this paper we present the design, implementa-
tion, and evaluation of BlueChip, a hybrid design-
time/runtime system for detecting and neutralizing ma-
licious circuits. During the design phase, BlueChip flags
as suspicious, any unused circuitry (any circuit not acti-
vated by any of the many design verification tests) and
deactivates them. However, these seemingly suspicious
circuits might actually be part of a legitimate circuit
within the design, so BlueChip inserts circuitry to raise
an exception whenever one of these suspicious circuits
would have been activated. The exception handler soft-
ware is responsible for emulating hardware instructions
to allow the system to continue execution. BlueChip’s
overall goal is to push the complexity of coping with
malicious hardware up to a higher, more flexible, and
adaptable layer in the system stack.

The contributions of this paper are:

• We present the BlueChip system (Sections 3 and 4),
which automatically removes potentially malicious
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circuits from a hardware design and uses low-level
software to emulate around removed hardware.

• We propose an algorithm (Section 5), called unused
circuit identification, for automatically identifying
circuits that avoid affecting outputs during design
verification. We demonstrate its feasibility (Sec-
tion 6) for use in addressing the problem of detect-
ing malicious hardware.

• We demonstrate (Sections 7, 8, and 9), using fully-
tested malicious hardware modifications as test
cases on a SPARC processor implementation oper-
ating on an FPGA, that: (1) the system successfully
prevents three different malicious hardware modifi-
cations, and (2) the performance effects (and hence
the overhead) of the system are small.

2 Motivation and attack model
This paper focuses on the problem of malicious circuits
introduced during the hardware design process. Today’s
complicated hardware designs are increasingly vulner-
able to the undetected insertion of malicious circuitry
to create a hardware trojan horse. In other domains,
examples of this general type of intentional insertion of
malicious functionality include compromises of software
development tools [26], system designers inserting mali-
cious source code intentionally [8, 20, 21], compromised
servers that host modified source code [11, 12], and
products that come pre-installed with malware [1, 4, 25].
Such attacks introduce little risk of punishment, because
the complexity of modern systems and prevalence of
unintentional bugs makes it difficult to prove malice or
to correctly attribute the problem to its source [27].

More specifically, our threat model is that a rogue
designer covertly adds trojan circuits to a hardware de-
sign. We focus on two possible scenarios for such rogue
insertion. First, one or more disgruntled employees at a
hardware design company surreptitiously and intention-
ally inserts malicious circuits into a design prior to final
design validation with the hope that the changes will
evade detection. The malicious hardware demonstrated
by King et al. [22] support the plausibility of this sce-
nario, in that only small and localized changes (e.g., to
a single hardware source file) are sufficient for creating
powerful malicious circuits designed for bootstrapping
larger system-level attacks. We call such malicious cir-
cuits footholds, and such footholds persist even after
malicious software has been discovered and removed,
giving attackers a permanent vector into a compromised
system.

The second scenario is enabled by the trend toward
“softcores” and other pre-designed hardware IP (intel-

lectual property) blocks. Many system-on-chip (SoC)
designs aggregate subcomponents from existing com-
mercial or open-source IP. Although generally trusted,
these third-party IP blocks may not be trustworthy. In
this scenario, an attacker can create new IP or modify
existing IP blocks to add malicious circuits. The attacker
then distributes or licenses the IP in the hope that some
SoC creator will incorporate it and include it in a fabri-
cated chip. Although the SoC creator will likely perform
significant design verification focused on finding design
bugs, traditional black-box design verification is unlikely
to reveal malicious hardware.

In either scenario, the attacker’s motivation could be
financial or general malice. If the design modification
remains undetected by final design validation and ver-
ification, the malicious circuitry will be present in the
manufactured hardware that is shipped to customers and
integrated into computing systems. The attacker has
achieved this without the resources necessary to actually
fabricate a chip or otherwise attacking the manufacturing
and distribution supply chain. We assume that only one
or a few individuals are acting maliciously (i.e., not the
entire design team) and that these individuals are unable
to compromise the final end-to-end design verification
and validation process, which is typically performed by
a distinct group of engineers.

Our approach to detecting insertions of malicious
hardware assumes analysis at the level of a hardware
netlist or hardware description language (HDL) source.
In the two scenarios outlined, this assumption is reason-
able, as (1) design validation and verification is primarily
performed at this level and (2) softcore IP blocks are
often distributed in HDL or netlist form.

We assume the system software is trustworthy and
non-malicious (although the malicious hardware may
attempt to subvert the overlying software layers).

3 The BlueChip approach

Our overall BlueChip architecture is shown in Figure 1.
In the first phase of operation, BlueChip analyzes the cir-
cuit’s behavior during design verification to identify can-
didate circuits that might be malicious. Once BlueChip
identifies a suspect circuit, BlueChip automatically re-
moves the circuit from the design. Because BlueChip
might remove legitimate circuits as part of the transfor-
mation, it inserts logic to detect if the removed circuits
would have been activated, and triggers an exception if
the hardware encounters this condition during runtime.
The hardware delivers this exception to the BlueChip
software layer. The exception handling software is re-
sponsible for recovering from the fault and advancing the
computation by emulating the instruction that was exe-
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Figure 1: Overall BlueChip architecture. This figure shows the overall flow for BlueChip where (a) designers develop
hardware designs and (b) a rogue designer inserts malicious logic into the design. During design verification phase,
(c) BlueChip identifies and removes suspicious circuits and inserts runtime hardware checks. (d) During runtime,
these hardware checks invoke software exceptions to provide the BlueChip software an opportunity to advance the
computation by emulating instructions, even though BlueChip may have removed legitimate circuits.

cuting when the exception occurred. BlueChip pushes
much of the complexity up to the software layer, al-
lowing defenders to rapidly refine defenses, turning the
permanence of the hardware attack into a disadvantage
for attackers.

BlueChip can operate in spite of removed hardware
because the removed circuits operate at a lower layer of
abstraction than the software emulation layer responsible
for recovery. BlueChip software does not emulate the
removed hardware directly. Instead, BlueChip software
emulates the effects of removed hardware using a sim-
ple, high-level, and implementation-independent spec-
ification of hardware, i.e., the processor’s instruction-
set-architecture specification. The BlueChip software
emulates the effects of the removed hardware by emu-
lating one or more instructions, updating the processor
registers and memory values, and resuming execution.
The computation can generally make forward progress
despite the removed hardware logic, although software
emulation of instructions is slower than normal hardware
execution.

In some respects our overall BlueChip system resem-
bles floating point instruction emulation for processors
that omit floating point hardware. If a processor de-
sign omits floating point unit (FPU) hardware, floating
point instructions raise an exception that the OS han-
dles. The OS can emulate the effects of the missing
hardware using available integer instructions. Like FPU
emulation, BlueChip uses software to emulate the ef-
fects of missing hardware using the available hardware
resources. However, the hardware BlueChip removes is
not necessarily associated with specific instructions and

can trigger BlueChip exceptions at unpredictable states
and events, presenting a number of unique challenges
that we address in Section 4.

4 BlueChip design
This section describes the design of BlueChip. We dis-
cuss the BlueChip hardware component (Section 4.1),
the BlueChip software component (Section 4.2), and
possible alternative architectures (Section 4.3). Section 5
discusses our algorithm for identifying suspicious cir-
cuits and Section 6 describes how BlueChip uses these
detection results to modify the hardware design.

We present general requirements for applying
BlueChip to hardware and to software, but we describe
our specific design for a modified processor and recovery
software running within an operating system.

4.1 BlueChip hardware
To apply BlueChip techniques, a hardware component
must be able to meet three general requirements. First,
BlueChip requires a hardware exception mechanism for
passing control to the software. Second, BlueChip must
prevent modified hardware state from committing when
the hardware triggers a BlueChip exception. Third, to
enable recovery the hardware must provide software ac-
cess to hardware state, such as processor register values
and other architecturally visible state.

Processors are well suited to meet the requirements
for BlueChip because they already have many of the
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mechanisms BlueChip requires. Processors provide easy
access to architecturally visible states to enable con-
text switching, and processors have existing exception
delivery mechanisms that provide a convenient way to
pass control to a software exception handler. Also,
most processors support precise exceptions that include
a lightweight recovery mechanism to prevent committing
any state associated with the exception. As a result, we
use existing exception handling mechanisms within the
processor to deliver BlueChip exceptions.

One modification we make to current exception se-
mantics is to assert BlueChip exceptions immediately in-
stead of associating them with individual instructions. In
current processors, many exceptions are associated with
a specific instruction that caused the fault. However, in
BlueChip it is often unclear which individual instruction
would have triggered the removed logic. Thus, BlueChip
asserts the exception immediately, flushes the pipeline,
and passes control to the BlueChip software.

4.2 BlueChip software

The BlueChip software is responsible for recovering
from BlueChip hardware exceptions and providing a
mechanism for system forward progress. This re-
sponsibility presents unusual design challenges for the
BlueChip software because it runs on a processor that
has had some portions of the design removed, therefore
some features of the processor may be unavailable to the
BlueChip exception handler software.

To handle BlueChip exceptions, BlueChip uses a re-
covery technique where the BlueChip software emu-
lates faulting instructions to carry out the computa-
tion. The basic emulation strategy is similar to an
instruction-by-instruction emulator, where for each in-
struction, BlueChip software reads the instruction from
memory, decodes the instruction, calculates the effects
of the instruction, and commits the register and memory
changes (Figure 2). By emulating instructions in soft-
ware, BlueChip skips past the instructions that use the
removed hardware, duplicating their effects in software,
providing the opportunity for the system to continue
making forward progress despite the missing circuits.

One problem with our first implementation of this
basic strategy was that our emulation routines sometimes
depended on removed hardware, thus causing unrecov-
erable recursive BlueChip exceptions. For example,
the “shadow-mode attack” (Section 7) uses a “bootstrap
trigger” that initiates the attack. The bootstrap trigger
circuit monitors the values going into the data cache and
enables the attack once it observes a specific value being
stored in memory. This specific value will always trigger
the attack regardless of the previous states and events
in the system. After BlueChip identified and removed
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Figure 2: Basic flow for an instruction-by-instruction
emulator. This figure shows how a software emulator
can calculate the changes to processor registers induced
by an or instruction.

the attack circuits, the BlueChip hardware triggered an
exception whenever the software attempted to store the
attack value to a memory location. Our first implemen-
tation of the store emulation code simply re-issued a
store instruction with the same address and value to
emulate the effects of the removed logic, thus creating
an unrecoverable recursive exception.

To avoid unrecoverable recursive BlueChip excep-
tions, we emulate around faulting instructions by pro-
ducing semantically equivalent results while avoiding
BlueChip exception states. For ALU operations, we map
the emulated instructions to an alternative set of ALU
operations and equivalent, but different, operand values.
For example, we implement or emulation using a series
of xor, and nand instructions rather than executing an
or to perform OR operations (Figure 3). For load and
store instructions we have somewhat less flexibility be-
cause these instructions are the sole means for perform-
ing I/O operations that access off-processor memory.
However, we do perform some transformations, such as
emulating word sized accesses using byte sized accesses
and vice versa.

4.3 Alternative designs
In this section we discuss other possible designs and
some of the trade offs inherent in their design decisions.
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Figure 3: BlueChip emulation. This figure shows how
BlueChip emulates around removed hardware. First, (1)
the software executes an or instruction, (2) which causes
a BlueChip exception. This exception is handled by the
BlueChip software, (3) which emulates the or instruction
using xor and nand instructions (4) before returning
control to the next instruction in the program.

BlueChip delivers exceptions using existing processor
exception handling mechanisms. One alternative could
be adding new hardware to deliver exceptions to the
BlueChip software component. In our current design,
BlueChip is constrained by the semantics of the exist-
ing exception handling mechanisms and cannot deliver
exceptions when software disables interrupts.

An alternative approach could have been to add extra
registers and logic to the processor to allow BlueChip to
save state and recover from BlueChip exceptions, even
when the software disables interrupts. However, this
additional state and logic would have required encoding
several implementation-specific details of the hardware
design into BlueChip, potentially making it more diffi-
cult to insert BlueChip logic automatically. Given the
infrequency of disabling interrupts for long periods in
modern commodity operating systems, we decided to
use existing processor exception delivery mechanisms.
If a particular choice of hardware and software makes
this unacceptable, there are several straightforward ap-
proaches to addressing this issue, such as using a hyper-
visor with some additional support for BlueChip.

BlueChip emulates around BlueChip exceptions by
using different instructions to emulate computations that
depend on hardware removed by BlueChip. In our
current design we implement this emulation technique
manually for all instructions in the processor’s instruc-
tion set. However, we still rely on portions of the OS
and exception handling code to save and restore the

system states we emulate around. It might be possible
for these instructions to inadvertently invoke an unrecov-
erable BlueChip exception by executing an instruction
that causes a BlueChip exception. One way to avoid
unrecoverable BlueChip exceptions could be to modify
the compiler to emit only a small set of Turing complete
instructions for the BlueChip software, such as nand,
load, and store instructions. Then we could focus
our testing or formal methods efforts on this subset of
the instruction set to decrease the probability of an un-
recoverable BlueChip exception. This technique would
likely make the BlueChip software slower because it
potentially uses more instructions to carry out equivalent
computations, but it could decrease the occurrence of
unrecoverable BlueChip exceptions.

5 Detecting suspicious circuits

This section describes our detection algorithm for identi-
fying suspicious circuits automatically within a hardware
design. We focus on automatically detecting potentially
malicious logic embedded within the HDL source code
of a design, and we perform our detection during the
design phase of the hardware design life cycle.

Our goal is to develop an algorithm that identifies
malicious circuits without identifying benign circuits. In
addition, our technique should be difficult for an attacker
to avoid, and it should identify potentially malicious code
automatically without requiring the defender to develop
a new set of design verification tests specifically for our
new detection algorithm.

Hardware designs often include extensive design veri-
fication tests that designers use to verify the functionality
of a component. In general, test cases use a set of inputs
and verify that the hardware circuit outputs the expected
results. For example, test cases for processors use a
sequence of instructions as the input, with the processor
registers and system memory as outputs.

Our approach is to use design verification tests to help
detect attack circuits. If an attack circuit contaminates
the output for a test case, the designer would know that
the circuit is operating out-of-spec, potentially detect-
ing the attack. However, recent research has shown
how hardware attacks can be implemented using small
circuits that are designed not to trigger during routine
testing [22]. This evasion technique works by guard-
ing the attack circuit with triggering logic that enables
the attack only when it observes a specific sequence of
events or a specific data value (e.g., the attack triggers
only when the hardware encounters a predefined 128-
bit value). This attack-hiding technique works because
malicious hardware designers can avoid perturbing out-
puts during testing by hiding deep within the vast state
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Figure 4: Circuit diagram and HDL source code for a
mux that can pass code coverage testing without enabling
the attack. This figure shows how a well-crafted mux can
pass coverage tests when the appropriate control states
(Ctl(0) and Ctl(1)) are triggered during testing. Control
states 00, 01, and 10 will fully cover the circuit without
triggering the attack condition.

space of a design,1 but can still enable attacks in the
field by inducing the trigger sequence. Our proposal is to
consider circuits suspicious whenever they are included
in a design but do not affect any outputs during testing.

5.1 Straw-man approach: code coverage

One possible approach to identifying potentially mali-
cious circuits could be to use code coverage. Code
coverage is defined as the percentage of lines of code that
are executed, out of those possible. Because attackers
will likely try to avoid affecting outputs during testing,
highlighting uncovered lines of code seems like a viable
approach to identifying potentially malicious circuits.

An attacker can easily craft circuits that are covered
completely by testing, but never trigger an attack. For
example, Figure 4 shows a multiplexer (mux) circuit that
can be covered fully without outputting the attack value.
If the verification test suite includes control states 00, 01,
and 10, all lines of code that make up the circuit will
be covered, but the output will always be “Good”. We
apply this evasion technique for some of the attacks we

1A processor with 16 32-bit registers, a 16k instruction cache, a
64k data cache, and 300 pins has at least 2655872 states, and up to
2300 transition edges.

// step one: generate data-flow graph

// and find connected pairs

pairs = {connected data-flow pairs}

// step two: simulate and try to find

// any logic that does not affect the

// data-flow pairs

foreach simulation clock cycle

foreach pair in pairs

if the sink and source not equal

remove the pair from the pairs set

Figure 5: Identifying potentially malicious circuits using
our UCI algorithm.
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Figure 6: Data-flow graph for mux replacement circuit.

evaluated (Section 7) and find that it does evade code
coverage detection.

Although code coverage can complicate the attacker’s
task of avoiding testing, this technique can be defeated
because code coverage misses the fundamental property
of malicious circuits: attackers are likely to avoid af-
fecting outputs during testing, otherwise they would be
caught. Instead, what defenders need is a technique that
zeros in on this property to identify potentially malicious
circuits more reliably.

5.2 Unused circuit identification

This section describes our algorithm, called unused cir-
cuit identification (UCI), for identifying potentially ma-
licious circuits at design time. Our technique focuses
on identifying portions of the circuit that do not affect
outputs during testing.

To identify potentially malicious circuits, our algo-
rithm performs two steps (Figure 5). First, UCI creates a
data-flow graph for our circuit (Figure 6). In this graph,
nodes are signals (wires) and state elements; edges in-
dicate data flow between the nodes. Based on this data-
flow graph, UCI generates a list of all signal pairs, or
data-flow pairs, where data flows from a source signal to
a sink signal. This list of data-flow pairs includes both
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direct dependencies (e.g., (Good, X) in Figure 6) and
indirect dependencies (e.g., (Good, Out) in Figure 6).

Second, UCI simulates the HDL code using design
verification tests to find the set of data-flow pairs where
intermediate logic does not affect the data that flows
between the source and sink signals. To test for this con-
dition, at each simulation step UCI checks for inequality
for each of our remaining data-flow pairs. If the elements
of a pair are not equal, this implies, conservatively, that
the logic in between the two pairs has an effect on the
value, thus we remove pairs with unequal elements from
our data-flow-pairs set. For registers, UCI accounts
for latched data by maintaining a history of simulation
values, allowing it make the appropriate comparison for
tracking signal propagation.

After the simulation completes, UCI has a set of re-
maining data-flow pairs where the logic in between the
pairs does not affect the signal value from source to sink.
In other words, we could replace the intermediate logic
with a wire, possibly including some delay registers, and
it would not affect the overall behavior of the circuit in
any way for our design verification tests.

Consider how this algorithm works for the mux-
replacement circuit shown in Figure 4:

1. UCI creates the initial set of data-flow pairs, which
for our circuit is (Good,X), (Attack,X), (Good,Y),
(Attack,Y), (Good,Out), (Attack,Out), (X,Out), and
(Y,Out).

2. UCI considers the first simulation step where the
control signals are 00 and the output is Good, X is
Good, and Y is Good. This removes (Attack,X),
(Attack,Y), and (Attack,Out).

3. UCI considers the second simulation step where the
control signals are 01 and the output is Good, X is
Good, and Y is Attack. This removes (Good,Y) and
(Y,Out).

4. UCI considers the third simulation step where the
control signals are 10 and the output is Good, X is
Attack, and Y is Good. This removes (Good,X) and
(X, Out).

5. UCI finishes the simulation and is left with
(Good,Out) in the list of data-flow pairs where inter-
mediate logic does not affect the signal propagation.

The resulting output from UCI for this example
identifies the malicious circuit without identifying any
additional signals. Because it systematically identi-
fies circuits that avoid affecting outputs during testing,
BlueChip connects the “Good” signal directly to the
“Out” signal, thus removing the malicious elements from
the design.

5.3 UCI limitations

In Section 9 we show that UCI successfully identifies the
malicious circuits for the hardware-level footholds we
developed. In this section we discuss ways an attacker
could hide malicious circuits from UCI.

First, an attacker could include malicious test cases
that check attack states incorrectly. By including these
malicious test cases in the design verification test suite
an attacker could fool the system designer into thinking
that the out-of-spec modifications are in fact in-spec, thus
slipping the attack past UCI. However, design verifica-
tion tests work at a higher level of abstraction, making it
easier for system designers to verify the results indepen-
dently. In fact, the BlueChip software includes code for
instruction-level emulation of the processor’s instruction
set, and we use this emulation code on our test cases to
verify that the test suite checks states correctly.

Second, an attacker could avoid UCI by crafting mali-
cious circuits that affect unchecked outputs. Unchecked
outputs could arise from incomplete test cases or from
unspecified output states. For example, the memory
model in the SPARC processor specification provides
freedom for an implementation to relax consistency be-
tween processors in a multi-processor system [24]. This
type of implementation-specific behavior could be used
by an attacker who affects outputs that might be difficult
for a testing program to check deterministically, thus
causing malicious circuits to affect outputs and avoid our
analysis. However, this evasion technique requires the
attacker to trigger the attack during design verification,
thus tests that check implementation-specific states and
events could detect the foothold directly.

Third, to simplify the analysis of the HDL source,
our current UCI implementation excludes mux control
signals from the data-flow graph. If an attacker could use
only mux control signals to modify architecturally visi-
ble states directly, UCI would miss the attack. However,
this limitation is only an artifact of our current imple-
mentation and would likely be remedied if we included
mux control signals in our analysis.

6 Using UCI results in BlueChip

This section discusses how BlueChip uses the results
from UCI to eliminate the effects of suspicious circuits.
UCI outputs a set of data-flow pairs, where each pair has
a source element, a sink element, and a delay element.
Conceptually, the source and the sink element can be
connected directly by a wire containing delay number of
registers, effectively short circuiting the signals with a
delay line. This removes the effects of any intermediate
logic between the source and the sink. BlueChip imple-
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Figure 7: HDL code and circuit diagram for HDL transformations BlueChip makes to remove an attack from a design.
This figure shows (a) the original design where an attacker can transition the processor into supervisor mode by
asserting the attack_en signal. During design verification, UCI detects that the value for rout.su always equals
rin.su, thus identifying the mux as a candidate for removal. Part (b) shows how BlueChip removes this logic by
connecting rin.su to rout.su directly and adds exception notification logic to notify software of any inconsistencies
at runtime.

ments this short-circuit by performing a source-to-source
transformation on the design’s HDL source code.

Once UCI generates a set of data-flow pairs, the pairs
are fed into the BlueChip system (transformation pic-
tured in Figure 7). BlueChip takes these pairs as an
input and replaces the suspicious circuits by modifying
the HDL code using three steps. First, BlueChip creates
a backup version of each sink in the list of pairs. The
backup version of a signal holds the value that would
have been assigned to the signal in the original circuit.
Second, BlueChip adds a new assignment to the original
signal. The value assigned to the original signal is simply
the value of the source element in the pair, creating a
short circuit between the source and the sink. The rest
of the design will see this short-circuited value, while
the BlueChip exception generation hardware sees the
backed-up version. The third and final step consists of
adding the BlueChip exception generation logic to the
source file. This circuit compares the backed-up value of
the sink element with the source value. BlueChip gener-
ates an exception whenever any of these comparisons are
not true. When a BlueChip exception occurs, it signals
that the hardware was about to enter a state that was not
seen during testing. From here, the BlueChip software is
responsible for making forward progress.

The HDL transformation algorithm also must handle
multiple data-flow pairs that share the same sink signal
but have different sources. This situation could poten-

tially cause problems for BlueChip because it is unclear
which source signal to short-circuit to the original sink
signal. Our solution is to pick one pair for the sink signal
assignment, but include exception generation logic for all
pairs that share the same sink element. This means that
all violations are detected, but the sink may be shorted
with the source that caused the exception. This untested
state is safe because (1) BlueChip asserts exceptions
immediately when detecting an inconsistency between
the original design and the modified circuit, (2) BlueChip
checks all data-flow pairs for inconsistencies, and (3)
BlueChip leverages hardware recovery mechanisms to
prevent the persistence of untrusted state modifications.

7 Malicious hardware footholds

This section describes the malicious hardware trojans we
used to test the effectiveness of BlueChip. Prior work on
developing hardware attacks focused on adding minimal
additional logic gates as a starting point for a system-
level attack [22]. We call this type of hardware mecha-
nism a foothold. We explored three such footholds. The
first foothold, called the supervisor transition foothold,
enables an attacker to transition the processor into su-
pervisor mode to escalate the privileges of user-mode
code. The second foothold, called the memory redi-
rection foothold, enables an attacker to read and write
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arbitrary virtual memory locations. The third foothold,
called the shadow mode foothold, enables an attacker
to pass control to invisible firmware located within the
processor and take control of the system. Previous work
has shown how these types of footholds can be used
as part of a system-level attack to carry out high-level,
high-value attacks, such as escalating privileges of a
process or enabling attackers to login to a remote system
automatically [22].

7.1 Supervisor transition foothold
Our supervisor transition foothold provides a hardware
mechanism that allows unprivileged programs to tran-
sition the processor into supervisor mode. This transi-
tion grants access to privileged instructions and bypasses
the usual hardware-enforced protections, allowing the
attacker to escalate the privileges of an otherwise unpriv-
ileged process.

The malicious hardware is triggered when it observes
a sequence of instructions being executed by the pro-
cessor. This attack sequence can be arbitrarily long
to avoid false positives, and the particular sequence is
hard coded into the hardware. This foothold requires
relatively few transistors. We implement it by including a
small state machine in the integer unit (i.e., the pipeline)
of the processor that looks for the triggering sequence
of instructions, and asserts the supervisor-mode bit when
enabled.

7.2 Memory redirection foothold
Our memory redirection foothold provides hardware
support for unprivileged malicious software by allowing
an attacker to access arbitrary virtual memory locations.

This foothold uses a sequence of bytes as the trig-
ger. In this case, when the foothold observes store
instructions with a particular sequence of byte values it
then interprets the subsequent bytes as the redirection
address. The malicious logic records the address of the
block and the redirection address in hardware registers.
The next time the address is loaded from memory, the
malicious hardware substitutes the redirection address as
the address to be loaded and asserts the supervisor bit
passed to the memory management unit (MMU). That
is, the next read to this block will return the value of
a different location in the memory. Memory writes are
handled analogously, in that the next write to the block
is redirected to write to the redirection address. The net
effect is providing full access to arbitrary virtual memory
locations and bypassing MMU protections enforced in
the processor.

This foothold provides flexibility for attackers because
attackers can trigger the circuit using only data values.

Attackers can trigger the foothold by injecting specific
data values into a system using a number of techniques
including unsolicited network packets, emails, and im-
ages on web sites. By using these mechanisms to
arbitrarily manipulate the system’s memory, a remote
attacker can compromise the system, for example, by
searching memory for encryption keys, disabling authen-
tication checks by modifying the memory of the targeted
system, or altering executable code running on the sys-
tem.

7.3 Shadow mode foothold

The shadow mode foothold allows an attacker to inject
and execute arbitrary code. The shadow mode foothold
works by monitoring data values as they pass between
the cache and the pipeline, and installs an invisible
firmware within the processor when a specific value trig-
gers the attack. When this firmware runs, it runs with full
processor privileges, it can gain control of the processor
at any time, and it remains hidden from software running
on the system. To provide storage for exploit instructions
and data, this foothold reserves blocks in the instruction
and data caches for storing injected instructions and data.
The shadow mode foothold is triggered with a sequence
of bytes and the shadow mode foothold interprets the
bytes following the trigger sequence as commands and
machine instructions.

To evaluate BlueChip, we implement the “bootstrap
trigger” portion of the shadow mode foothold. The boot-
strap trigger waits for a predetermined value to be stored
to the data cache, and asserts a processor exception that
transfers control to a hard-coded “bootstrap code” that
resides within the processor cache. Our implementation
includes the “bootstrap trigger” and asserts a processor
exception, but omits the “bootstrap code” portion of the
foothold. As a result, we are unable to implement full
system attacks using our version of the foothold, but it
does give us enough of the functionality of the shadow
mode foothold to enable us to evaluate our defense
because removing the “bootstrap trigger” disables the
attack.

8 BlueChip prototype
To experimentally verify the BlueChip approach, we
prototyped the hardware, the software, and the design-
time UCI analysis algorithm.

We based our hardware implementation on the Leon3
processor [15] design. Our prototype is fully synthesiz-
able and runs on an FPGA development board that in-
cludes a Virtex 5 FPGA, CompactFlash, Ethernet, USB,
VGA, PS/2, and RS-232 ports. The Leon3 processor
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implements the SPARC v8 instruction set [24] and our
configuration uses eight register windows, a 16 KB in-
struction cache, a 64 KB data cache, includes an MMU,
and runs at 100 MHz, which is the maximum clock rate
we are able to achieve for the unmodified Leon3 design,
for our target FPGA. For the software, we use a SPARC
port of the Linux 2.6.21.1 kernel on our FPGA board and
we install a full Slackware distribution on our system.
By evaluating BlueChip on an FPGA development board
and by using commodity software, we have a realistic
environment for evaluating our hardware modifications
and accompanying software systems.

To insert our BlueChip hardware modifications, we
wrote tools that take as input data-flow pairs generated by
our UCI implementation and automatically transforms
the Leon3 VHDL source code to replace suspicious cir-
cuits and add exception delivery logic. Our tool is mostly
hardware-implementation agnostic and should work on
a wide range of hardware designs automatically. The
only hardware implementation specific portions of our
tool are for connecting the BlueChip logic to the Leon3
exception handling stage.

For our UCI implementation, we wrote a VHDL com-
piler front end in Java which generates a data-flow graph
from arbitrary HDL source code, determines all possible
pairs of edges in the data-flow graph, then uses TCL to
automatically drive ModelSim, running the simulation
and removing pairs that are violated during testing. The
last stage of our UCI implementation performs a source-
to-source transformation using the original VHDL de-
sign and remaining data-flow pairs to generate a design
with BlueChip hardware.

Our BlueChip software runs as an exception handler
within the Linux kernel. The BlueChip emulation code is
written in C and it can emulate all non-privileged SPARC
instructions and most of the privileged operations of the
Leon3 SPARC implementation. Because SPARC is a re-
duced instruction set computer (RISC), we implemented
our emulator using only 1759 lines of code and it took
us about a week to implement our instruction emulation
routines.

We identify suspicious hardware using three sets of
tests: the basic test suite included with the Leon3 distri-
bution, SPARC certification test cases from SPARC In-
ternational, and five additional test cases to test portions
of the instruction set specification that are uncovered by
the basic Leon3 and SPARC certification test cases. To
identify suspicious logic, we simulate the HDL using
ModelSim version 6.5 and perform the UCI analysis on
the simulation results. Our analysis focuses on the inte-
ger unit (i.e., the core pipeline) of the Leon3 processor.

9 BlueChip evaluation

This section describes our evaluation of BlueChip. In our
evaluation, we measure BlueChip’s: (1) ability to stop at-
tacks, (2) ability to successfully emulate instructions that
used hardware removed by BlueChip, and (3) hardware
and software overheads.

9.1 Methodology

To evaluate BlueChip’s ability to prevent and recover
from attacks, we wrote software that activates the mali-
cious hardware described in Section 8. We designed the
software to activate and exploit the low-level footholds
implemented by our attacks, and tested to see if these
out-of-spec abstractions were rendered powerless and if
the system could make post attack progress.

To identify suspicious circuits, we used three different
sets of hardware design verification tests. First, we used
the Gaisler test suite that comes bundled with the Leon3
hardware’s HDL code. These test cases use ISA-level
instructions to test both the processor core and peripheral
(i.e., outside the processor core) units like the caches,
memory management unit, and system-on-chip units
such as the UART. Second, we used the official SPARC
verification tests from SPARC International, which are
used to ensure compatibility with the SPARC instruction
set. These test cases are designed to confirm that a
processor implements the instructions and architecturally
visible states needed to be considered a SPARC proces-
sor, but they are not intended to be a complete design
verification suite. Third, we created a small set of custom
hardware test cases to improve design coverage, closer
to what is common in a production environment. The
custom test cases cover gaps in the Gaisler test cases
and exercises instructions that Leon3 supports, but are
optional in the SPARC ISA specification (e.g., floating-
point operations).

To measure execution overhead, we used three work-
loads that stressed different parts of the system: wget
fetches an HTML document from the Web and represents
a network bound workload, make compiles portions of
the ntpdate application and stresses the interaction be-
tween kernel and user modes, and djpeg decompresses a
1MB jpeg image as a representative of a compute-bound
workload. To address variability in the measurements,
reported execution time results are the average of 100 ex-
ecutions of each workload relative to an uninstrumented
base hardware configuration. All of our overhead exper-
iments have a 95% confidence interval of less than 1% of
the average execution time.
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Figure 8: BlueChip attack prevention and recovery.

9.2 Does BlueChip prevent the attacks?

There are two goals for BlueChip when aiming to defend
against malicious hardware. The first and most important
goal is to prevent attacks from influencing the state of
the system. The second goal is for the system to recover,
allowing non-malicious programs to make progress after
an attempted attack.

The results in Figure 8 show that BlueChip success-
fully prevents all three attacks, meeting the primary goal
for success. BlueChip meets the secondary goal of re-
covery for two of the three attacks, but it fails to recover
from attempted activations of the memory redirection
attack. In this case, the attack is prevented, but software
emulation is unable to make forward progress. Upon
further examination, we found that the Leon3’s built-in
pipeline recovery mechanism was insufficient to clear the
attack’s internal state. This lack of progress is due to
the attack circuit ignoring the Leon3 control signal that
resets registers on pipeline flushes, thus making some
attack states persist even after pipeline flushes. This sit-
uation causes the BlueChip hardware to repeatedly trap
to software, thus blocking forward progress, but prevent-
ing the attack. Our analysis indicates that augmenting
Leon3’s existing recovery mechanism to provide addi-
tional state recovery would allow BlueChip to recover
from this attack as well.

9.3 Is software emulation successful?

BlueChip justifies its aggressive identification and re-
moval of suspicious circuits by relying on software to
emulate any mistakenly removed functionality. Thus,
BlueChip will trigger spurious exceptions (i.e., those
exceptions that result from removal of logic mistakenly
identified as malicious). In our experiments, all of the
benchmarks execute correctly, indicating BlueChip cor-
rectly recovers from the spurious BlueChip exceptions
that occurred in these workloads.

Figure 9 shows the average rate of BlueChip excep-
tions for each benchmark. Even in the worst case, where
a BlueChip exception occurs every 20ms on average, the
frequency is far less than the operating system’s timer
interrupt frequency. The rate of BlueChip exceptions
is low enough to allow for complex software handlers
without sacrificing performance.
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Figure 9: BlueChip software invocation frequencies.

Figure 10 shows the experimental data used to quan-
tify the effectiveness of UCI. This figure shows the num-
ber of suspicious pairs remaining after each stage of test-
ing. The misidentified pairs, which are all false positives
for our tests, are the number of suspicious pairs minus
the number of attack pairs detected. These false positive
pairs can manifest themselves as spurious BlueChip ex-
ceptions during runtime. The number of pairs remaining
after testing affects the likelihood of seeing spurious
BlueChip exceptions, with fewer pairs generally leading
to less frequent traps. Even though some of the remain-
ing pairs result in spurious exceptions, the instruction-
level emulation provided by BlueChip software hides
this behavior from the rest of the system, thus allowing
unmodified applications to execute unaware that they are
running on BlueChip hardware.

The discrepancy in the number of traps experienced by
each benchmark is also worth noting. The make bench-
mark experiences the most traps, by almost an order of
magnitude. Looking at the UCI pairs that fire during
testing, and looking at the type of workload make creates,
the higher rate of traps comes from interactions between
user and kernel modes. This happens more often in
make than the other benchmarks, as make creates a new
process for each compilation. More in-depth tracing of
the remaining UCI pairs reveals that many pairs surround
the interaction between kernel mode and user mode.
Because UCI is inherently based on design verification
tests, this perhaps indicates the parts of hardware least
tested in our three test suites. Conversely, the relatively
small rate of BlueChip exceptions experienced by wget
is due to its I/O (network) bound workload. Most of the
time is spent waiting for packets, which apparently does
not violate any of the UCI pairs remaining after testing.
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Baseline Gaisler Tests +SPARC Tests +Custom Tests
Attack All Attack All Attack All Attack All

Privilege Escalation 2 3046 1 103 1 87 1 39
Memory Redirection 54 3098 8 110 8 94 8 46
Shadow Mode 8 3051 1 103 1 87 1 39

Figure 10: UCI dataflow pairs. This figure shows how many dataflow pairs UCI identifies as suspicious for the Gaisler
test suite, the SPARC verification test suite, and our custom test cases, cumulatively. The data shows the number of
dataflow pairs identified total, and shows how many of these pairs are from attack circuits.
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Figure 11: Application runtime overheads for BlueChip
systems.

9.4 Is BlueChip’s runtime overhead low?

Although BlueChip successfully executes our bench-
mark workloads, frequent spurious exceptions have the
potential to significantly impact system performance.
Furthermore, BlueChip’s hardware transformation could
impact the hardware’s operating frequency.

Figure 11 shows the normalized breakdown of runtime
overhead experienced by the benchmarks running on a
BlueChip system versus an unprotected system. The
runtime overhead from the software portion of BlueChip
is just 0.3% on average. The software overhead comes
from handling spurious BlueChip exceptions, primarily
from just two of the UCI pairs. The average overhead
from the hardware portions of BlueChip is approxi-
mately 1.4%.

Figure 12 shows the relative cost of BlueChip in
terms of power, device area, and maximum operating
frequency. The hardware overhead in terms of area
averages less than 1% of the entire design. Even though
BlueChip needs hardware to monitor the remaining pairs,
much of the hardware already exists and BlueChip just
taps the pre-existing signals. The majority of the area

Power Area Freq.
Attack (W) (Luts) (MHz)
Privilege Escalation 0.41% 1.38% 0.00%
Memory Redirection 0.47% 1.19% 5.00%
Shadow Mode 0.29% 0.31% 0.00%

Figure 12: BlueChip hardware overheads for each of our
attacks.

overhead comes from the comparisons used to determine
if a BlueChip exception is required given the state of
the pipeline. To reduce BlueChip’s impact on maximum
frequency, these comparisons happen in parallel and
BlueChip’s exception generation uses a tree of logical-
OR operations. In fact, for the privilege escalation and
shadow mode versions of BlueChip, there is no mea-
surable impact on maximum frequency, indicating that
UCI pair checking hardware is typically off the critical
path. For the memory redirection attack hardware de-
sign, some of the pair checking logic is placed on the
memory path, which is the critical path for this design
and target device. In this case, the maximum frequency
is reduced by five percent. Consistent with the small
amount of additional hardware, the power overhead av-
erages less than 0.5%.

10 Additional related work

In addition to specific work discussed in previous sec-
tions, our work is more broadly related to research on
attacks and defenses. We are not the first to look at
malicious hardware and defenses. However, prior work
has focused on other aspects of malicious hardware, such
as fabrication-level supply chain attacks, detection of
counterfeit chips, programmable hardware [17] and iso-
lation of circuits within FPGAs. This section describes
work on detecting and isolating malicious hardware, de-
tecting source-code-level security flaws, and hardware
extensibility.

12



10.1 Trojan detection & isolation

Agrawal et al. [3] propose signal processing techniques
to detect additional circuits through power side-channel
power analysis. This promising approach faces two key
challenges. First, it assumes that the defender has a
reference copy of the chip without a trojan circuit, an
assumption breaks down if an attacker can modify the
design of the circuit directly. Second, the results are for
power simulations on small (on the order of 1000 gate)
circuits. Although the results are promising, it is unclear
how well these techniques will work in practice and on
large circuits, such as microprocessors.

Huffmire et al. [19] propose isolation primitives for
hardware components designed to run on field pro-
grammable gate array (FPGA) hardware. These isolation
primitives can help system builders reason about con-
nections between components, but provide little or no
protection against potentially malicious central compo-
nents — such as a memory controller or processor —
that need to communicate with most or all components
on the system.

Process variations cause each chip to behave slightly
differently, and such analog side effects can be used
to identify individual chips. Gassend, et al. [16] use
this fact to create physically random functions (PUFs)
that can be used to uniquely identify individual chips.
Chip identification ensures that chips are not swapped in
transit, but provides no detection capabilities for chips
that include malicious hardware in the design.

10.2 Detecting source code modifications

Formal methods such as symbolic execution [9, 10],
model checking [6, 13, 28], and information flow [23, 29]
have been applied to software systems for better test
coverage and improved security analysis. These diverse
approaches can be viewed as alternatives to UCI, and
may provide promising extensions for UCI to detect ma-
licious hardware if correct abstractions can be developed.

10.3 Hardware extensibility

In some respects, the BlueChip system resembles previ-
ous work on hardware extensibility, where designers use
various forms of software to extend and change the way
deployed hardware works. Some examples of this type of
hardware extensibility include patchable microcode [18],
firmware-based TLB control in Itanium processors [2],
Transmeta code morphing software [14], and Alpha PAL
code [5]. Our design uses some of the same hardware
mechanisms used in these systems, but for coping with
malicious hardware rather than design bugs.

11 Conclusions
BlueChip neutralizes malicious hardware introduced at
design time by identifying and removing suspicious
hardware during the design verification phase, while us-
ing software at runtime to emulate hardware instructions
to avoid erroneously removed circuitry.

Experiments indicate that BlueChip is successful at
identifying and preventing attacks while allowing non-
malicious executions to make progress. Our malicious
circuit identification algorithm, UCI, relies on the at-
tempts to hide functionality to identify candidate cir-
cuits for removal. BlueChip replaces circuits identified
by UCI with exception logic, which initiates a trap to
software. The BlueChip software emulates instructions
to detour around the removed hardware, allowing the
system to attempt to make forward progress. Measure-
ments taken with the attacks inserted show that such
exceptions are infrequent when running a commodity
operating system using traditional applications.

In summary, these results show that addressing the
malicious insider problem for hardware design is both
possible and worthwhile, and that approaches can be cost
effective and practical.
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