
Cyrus: Unintrusive Application-Level Record-Replay
for Replay Parallelism

Nima Honarmand, Nathan Dautenhahn,
Josep Torrellas, Samuel T. King

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL
{honarma1, dautenh1, torrella, kingst}@illinois.edu

Gilles Pokam, Cristiano Pereira
Intel

Santa Clara, CA
{gilles.a.pokam, cristiano.l.pereira}@intel.com

Abstract
Architectures for deterministic record-replay (R&R) of multi-
threaded code are attractive for program debugging, intrusion anal-
ysis, and fault-tolerance uses. However, very few of the proposed
designs have focused on maximizing replay speed — a key en-
abling property of these systems. The few efforts that focus on re-
play speed require intrusive hardware or software modifications, or
target whole-system R&R rather than the more useful application-
level R&R.

This paper presents the first hardware-based scheme for unin-
trusive, application-level R&R that explicitly targets high replay
speed. Our scheme, called Cyrus, requires no modification to com-
modity snoopy cache coherence. It introduces the concept of an on-
the-fly software Backend Pass during recording which, as the log
is being generated, transforms it for high replay parallelism. This
pass also fixes-up the log, and can flexibly trade-off replay paral-
lelism for log size. We analyze the performance of Cyrus using full
system (OS plus hardware) simulation. Our results show that Cyrus
has negligible recording overhead. In addition, for 8-processor runs
of SPLASH-2, Cyrus attains an average replay parallelism of 5, and
a replay speed that is, on average, only about 50% lower than the
recording speed.

Categories and Subject Descriptors C.0 [General]: Hardware/
Software Interfaces; C.1.2 [Processor Architectures]: Multiple
Data Stream Architectures (Multiprocessors) - MIMD Processors;
D.1.3 [Programming Techniques]: Concurrent Programming -
Parallel Programming; D.1.3 [Programming Techniques]: Con-
current Programming - Parallel Programming; D.4.0 [Operating
Systems]: General; D.4.1 [Operating Systems]: Process Man-
agement - Threads

Keywords Deterministic Replay, Application-level Parallel Re-
play, Unintrusive Hardware-Assisted Recording, Source-only Record-
ing, Backend Log Processing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’13, March 16–20, 2013, Houston, Texas, USA.
Copyright c� 2013 ACM 978-1-4503-1870-9/13/03. . . $15.00

1. Introduction
Deterministic Record-Replay (R&R) seeks to monitor the execu-
tion of a program (or a set of programs) and exactly reproduce it
on a subsequent execution. R&R has broad uses in at least program
debugging [1, 15, 33], where, for example, a concurrency bug can
be reproduced, intrusion analysis [10, 14], where an intrusion can
be traced back to an attacker’s actions, and fault-tolerant, highly-
available systems [9, 32], where a backup machine can resume
where the primary failed. This paper focuses on R&R for multi-
threaded applications on multiprocessor machines. In such a sce-
nario, R&R typically involves recording all the non-deterministic
events that occurred during the initial execution — i.e., applica-
tion inputs and memory access interleavings. Then, during replay,
logged inputs are provided to the application at the correct times,
and the memory accesses are forced to interleave in the same man-
ner as in the log.

There are several proposals of schemes for R&R of multi-
threaded programs. On the one hand, there are those that do not
require any special hardware [2, 5, 10, 11, 18, 27, 28, 32–34],
typically relying on the OS, compiler and/or run-time libraries for
recording and replaying. Being software-only solutions, these sys-
tems are relatively inexpensive to implement but tend to run slowly
during recording. Other schemes record with the aid of some spe-
cial hardware module [3, 7, 13, 23–26, 30, 31, 35–37]. These sys-
tems add negligible overhead during recording, but can be expen-
sive to implement. In addition, some schemes R&R the whole ma-
chine’s execution (e.g., [3, 13, 23]), while there are others that
only R&R a single or a group of applications running on the ma-
chine (e.g., [24, 25, 33]). Typically, it is the latter (application-level
R&R) that the users actually need rather than the former (whole-
system R&R). In addition, recreating the whole machine state dur-
ing replay is often very hard and, to work correctly, needs to deal
with many non-portable operating system and hardware issues of
the platform. Application-level R&R, in contrast, tends to be more
portable and adds less overhead.

Different R&R schemes attempt to optimize different metrics.
Traditionally, hardware-based R&R schemes have attempted to
minimize log size requirements. Software-based schemes, instead,
have focused on minimizing the overhead of recording — in some
cases, even at the cost of potentially having to replay multiple
times [2, 28]. Very few schemes have focused on maximizing
replay speed — most notably DeLorean/Capo [23, 24], Double-
Play [34], and Karma [3]. All three use parallel replay mechanisms
for this purpose.

Each of the three previous systems has shortcomings that could
limit its practicality. Specifically, DeLorean/Capo uses transac-

tional record and replay hardware, which requires a redesign of
current commodity processor hardware. Karma provides whole-
system R&R rather than application-level R&R. As indicated
above, this is not what users typically need and, in addition, it is
hardly portable. In addition, Karma requires augmenting the cache
coherence protocol messages — which we want to avoid. Finally,
DoublePlay is a software-based scheme, which requires modifying
and recompiling the application, marking its synchronizations.

This is unfortunate, given that fast replay is a key enabling
property for R&R systems. For example, debugging can be more
productive if buggy executions can be quickly replayed to the point
of the bug. Similarly, intrusion analysis can benefit from extensive
on-the-fly analysis of how the attack is taking place. Finally, in fault
tolerance, a backup machine has to quickly catch up with a failed
one to provide hot replacement.

To attain effective low-overhead R&R, we believe that, in addi-
tion to providing fast parallel replay, the system needs to: (i) sup-
port application-level R&R, and (ii) rely on unintrusive hardware
design. In particular, it should avoid system-level hardware changes
such as any changes to the cache coherence protocol. We believe
this is fundamental for acceptance of R&R hardware. Since most
multiprocessors today use snoopy cache coherence, we require our
design to be compatible with (and not modify) snoopy protocols.

In this paper, we make the following contributions:
• We present the first hardware-based approach for unintrusive,
application-level R&R that explicitly targets high-speed replay. The
approach, called Cyrus, requires no modification to commodity
snoopy cache coherence.
• Cyrus introduces the concept of an on-the-fly software Back-
end Pass during recording which, as the log is being generated,
consumes it and transforms it. This pass fixes-up the log, which
has incomplete information due to our recording requirements of
only application-level interactions and no cache coherence proto-
col changes. In addition, the backend pass exposes a high degree of
parallelism for replay. Finally, as the backend pass produces the fi-
nal log, it can also flexibly trade-off replay parallelism for log size.
• We modified the Linux kernel to control and virtualize a simu-
lated version of the Cyrus hardware. Our results show that Cyrus
adds negligible recording overhead, even with the backend pass. In
addition, for 8-processor runs of SPLASH-2, Cyrus attains an av-
erage replay parallelism of 5 (in terms of the length of the critical
instruction path), and a replay speed that is, on average, only about
50% lower than the recording speed.

The rest of the paper is organized as follows: Section 2 discusses
background issues and challenges in R&R; Section 3 presents
Cyrus’ architecture; Section 4 describes implementation issues;
Sections 5 and 6 evaluate Cyrus; Section 7 discusses related work;
and Section 8 concludes the paper.

2. Background and Key Challenges
2.1 Background on Deterministic R&R
Deterministic Record-Replay (R&R) consists of monitoring the
execution of a multithreaded application on a parallel machine,
and then exactly reproducing the execution later on. R&R requires
recording all the non-deterministic events that occur during the ini-
tial execution. They include the inputs to the execution (e.g., return
values from system calls) and the order of the inter-thread com-
munications (i.e., the interleaving of the inter-thread data depen-
dences). Then, during replay, the logged inputs are fed back to the
execution at the correct times, and the memory accesses are forced
to interleave according to the log.

To accomplish application-level R&R, we leverage previous
work, Capo [24], which describes how the OS virtualizes the R&R

structures. A Replay Sphere is the single application (or group of
applications) that we want to R&R in isolation from the rest of the
system. Each sphere has an Input Log and a Memory Log.

The Memory Log collects the order of the data dependences
between threads. To collect such orders, we can use a software-
only solution that relies on the runtime or operating system. Al-
ternatively, we can use a hardware-assisted scheme that relies on
a special hardware module. This approach has the advantage of
recording with negligible performance overhead, even for appli-
cations with frequent inter-thread data dependences. Hardware-
assisted schemes typically use cache coherence transactions to de-
tect inter-thread dependences.

To reduce the amount of state that needs to be collected in the
Memory Log, most of the recent proposals of hardware-assisted
schemes [3, 13, 23, 24, 30, 35] log the amount of work that a
thread does between communications, rather than the communi-
cations themselves. Specifically, each entry in the log records the
number of consecutive operations executed by a processor between
inter-thread dependences. These groups of instructions or memory
accesses are known as chunks, episodes or blocks. The entry also
has information on what other block(s) in the log depend on this
one. During replay, inter-thread dependences are enforced by exe-
cuting these blocks in the proper order.

Most of the proposed block-based recording schemes encode
the execution in a fairly serial form that can take away much of
the parallelism that existed in the original execution. Specifically,
some schemes log a total order of blocks [23, 24, 30], while others
use Scalar Lamport Clocks (SLC) [17] to order blocks [13, 35].
In a basic design with SLCs, when a processor detects an inter-
thread data dependence, it terminates its current block and assigns
to it a scalar clock value (usually called timestamp). The recording
mechanism guarantees that if an instruction in block B2 depends
on an instruction in block B1, then B2 receives a timestamp strictly
larger than that of B1. This way of using timestamps creates many
unnecessary block ordering constraints which hide the original
parallelism.

To recover lost parallelism, DeLorean uses speculative execu-
tion of blocks in parallel [23]. Karma [3], instead, records the block
orders as a directed acyclic graph (DAG) of blocks. In the general
case, each block has multiple predecessor and successor blocks,
and parallel replay is possible.

Karma, however, is a whole-system R&R scheme that has been
designed around a directory-based cache coherent system. It aug-
ments the coherence messages with timestamps and some new
fields. It relies on the availability of explicit invalidation acknowl-
edgements in directory protocols.

2.2 Key R&R Challenges
Our goal is to develop a useful and easy-to-implement R&R hard-
ware scheme. Such a scheme needs to: (i) support application-level
R&R rather than whole-system R&R, (ii) avoid changes to system-
level multiprocessor hardware, especially changes to the snoopy
cache coherence protocol, and (iii) enable highly-parallel replay.

In this section, we elaborate on the challenges that these three
requirements pose. Our general approach matches current propos-
als [3, 13, 23, 24, 30, 35]: we use the cache coherence transactions
to detect dependences between threads, and each entry in the log
records the number of consecutive instructions executed by a pro-
cessor between dependences.

2.2.1 Challenge 1: Application-Level R&R
The main difficulty in performing application-level R&R is that
many of the cache coherence transactions observed in the ma-
chine are potentially unrelated to the application being recorded;
they are due to the OS or to other applications. Consequently, an

application-level R&R scheme has to identify these unrelated trans-
actions and prevent them from inhibiting correct replay. This is un-
like a whole-system R&R scheme.

Figure 1 shows this problem for a three-processor machine. As
we run the application, we may observe coherence transactions be-
tween processors executing the application being recorded (e.g.,
transaction (1)). However, we may also observe transactions be-
tween the application being recorded and the OS (transaction (2)),
between two OS threads (transaction (3)), and even between the
application (or OS) and an application that is not being recorded
(transactions (4) and (5)).

P0 P1 P2

(2)

Appl being recorded

OS on behalf of

not being recorded
Context switch

appl being recorded

App not being recorded
or OS on behalf of appl

(1)

Ti
m

e

(3)
(5)

(4)

Figure 1. Difficulties in capturing inter-thread dependences in
application-level R&R.

Some of these communication events are unrelated to the ap-
plication and can make the log inconsistent and cause replay di-
vergence. They result from a variety of causes. One is interac-
tion between OS and application threads, possibly through com-
mon buffers, and between OS threads. Another is the presence
of hardware prefetchers, which may move unpredictable data and
change its coherence state. Another effect is the processor issu-
ing speculative loads, which access unpredictable data. In addition,
the presence of context switches adds further uncertainty: a trans-
action may move data from a cache where the owner thread has
been preempted. Should we record it? Finally, the Bloom filters [4]
used in many R&R schemes to help detect dependences between
threads [13, 23, 30] compound the problem: the events may be false
positive dependences due to address aliasing in the signature.

2.2.2 Challenge 2: Unintrusive Hardware
The second challenge of an R&R scheme is the need to avoid
changes to system-level hardware and, in particular, any changes
to the cache coherence protocol. This paper focuses on snoopy co-
herent systems because they are the most commonly used approach
today. In this environment, we must not augment the coherence pro-
tocol with new messages or even new fields in existing messages.
This is because the timing of the messages is an integral part of
the protocol design and any timing changes will require protocol
re-validation.

A key consequence of this requirement is that the R&R scheme
must record inter-thread dependences from the dependence source
only. To see why, consider Figures 2(a)-(c). In these charts, pro-
cessor P1 initiates a request, which causes P0 to supply a cached
line and/or to invalidate it. These are dependences that need to be
recorded in the R&R log. However, snoopy protocols provide in-
complete information. Specifically, while the requesting processor
(P1) includes its ID in the coherence transaction, the processor at
the dependence source (P0) does not supply its ID in Figure 2(c)
because there is no response message; in addition, P0 may or may
not provide its ID in Figures 2(a)-(b). This is unlike directory-based
protocols, where there are explicit request and response messages
that include the sender ID.

Hence, in any dependence, only the R&R module at the source
processor (P0) knows about it and logs it; we have to assume that

P0 P1

data

P1 rd

(a)

P0 P1

data

P1 wr

(b)

invl
P0 P1

P1 wr

(c)

invl

P0→P1

(d)

Predecessor

(e)

Successor

Figure 2. Keeping a snoopy cache coherence protocol unmodified
requires recording dependences from the dependence source only.

the R&R module at the destination processor (P1) is completely
unaware of the dependence. Any replay system must be able to
reconstruct the execution from a log with only dependences of the
form shown in Figure 2(d) instead of bidirectional successor and
predecessor information as in Figure 2(e).

2.2.3 Challenge 3: Replay Parallelism
Parallelism is fundamental to high-speed replay, which in turn will
enable new uses of this technology. To expose maximum paral-
lelism, the log must encode the dependences between blocks across
threads. Also, for each dependence, the source and destination
block boundaries should be as close as possible to the dependence’s
source and destination references, respectively.

3. Unintrusive App-Level R&R for Replay
Parallelism

3.1 Main Idea
We propose a new general approach to address the previous chal-
lenges and deliver hardware-unintrusive, application-level R&R for
replay parallelism. Our approach is called Cyrus. We use the mech-
anisms of Capo [24] to record input logs (Section 4.2). As for the
memory log, to support application-level R&R, the hardware judi-
ciously avoids logging certain types of interprocessor interactions.
Moreover, to keep the cache coherence protocol unmodified, the
hardware logs the dependence only on the source processor. The
result of these two constraints is a log with some dependences that
still need to be fixed-up or discarded, and with unidirectional de-
pendence information only.

Consequently, as the log is being dumped into memory, an on-
the-fly software Backend Pass consumes it and transforms it into
the final log. This backend pass performs three actions: (i) fixes-
up and discards some of the dependences to correctly implement
application-level replay; (ii) transforms the unidirectional depen-
dences into bi-directional ones for ease of replay; and (iii) produces
a log that enables a high degree of parallelism during replay. In ad-
dition, the backend pass can flexibly produce a log with the desired
tradeoff between degree of replay parallelism and log size.

Figure 3 shows the system. We consider this backend pass to be
a fundamental enabler of a hardware-assisted R&R scheme that is
hardware-unintrusive, supports application-level R&R and allows
a maximum (and also settable) degree of replay parallelism. In the
following, we show how Cyrus addresses each of the challenges.

3.2 Application-Level R&R
To understand which interprocessor dependences need to be recorded
for application-level R&R, consider the model of Figure 4(a). At

OSOS (M)
Context switch

Non−
monitored (N)

P0

Ti
m

e

Application
(M)app

(a)

P1 P2P0

(1)
(2) (3)

(4)

(5)
(6) (6)

(6)(6)

(7)

(8)
(b)

Type of Interaction Type of Dependence Cyrus Action Example

srcM

srcMapp ! dstMapp Correct Record (1)
srcMOS ! dstMapp Correct Record (2)
srcMapp ! dstMOS Early or Unrelated Record & Defer/Discard (3)
srcMOS ! dstMOS Early or Unrelated Record & Defer/Discard (4)

srcM ! dstN Unrelated Record & Defer/Discard (5)
M -preemption in context switch Serialization (Multiple) Record & Defer/Discard (6)

srcN
srcN ! dstM Correct, Early or Unrelated Ignore (7)
srcN ! dstN Unrelated Ignore (8)

(c)

Figure 4. Characterizing the types of interprocessor interactions.

Backend Pass

Recording
Processors

Memory

!"#$#%&'

()*

Replay
Machine

Figure 3. Overview of the Cyrus system.

any given time, a processor may run a process that is being recorded
or one that is not. We call such times M and N for monitored and
non-monitored, respectively. During the M time, the processor may
run application code (Mapp time) or OS code on behalf of the
application (MOS time).

In this environment, there are several types of interactions be-
tween a source and a destination processor. The destination proces-
sor (dst) is the one that initiates a coherence action and receives a
response — e.g., it misses in its cache or sends an invalidation. The
source processor (src) is the one that sends the response. Figure 4(c)
shows the types of interactions possible, together with the corre-
sponding type of dependence involved, the action taken by Cyrus,
and a dependence example from Figure 4(b). In the next few para-
graphs, we describe each of the interactions and how Cyrus handles
them.

We start by describing the interactions where the source is a
processor running a monitored process (srcM), as shown in the first
group of entries in Figure 4(c). If the destination is a processor
running monitored application code (srcMapp ! dstMapp or
srcMOS ! dstMapp), this is a correct dependence within the
recorded application — the recorded application misses in the
cache or sends an invalidation. Therefore, Cyrus records it in the
log.

If the destination is running the OS on behalf of a monitored
application (srcMapp ! dstMOS or srcMOS ! dstMOS), two
cases are possible. One is that the OS is accessing data that will later
be accessed by the monitored application code (i.e., it is effectively
prefetching the data); the other case is that the OS is accessing
data that is unrelated to the monitored program and happens to be
in the source processor’s cache. In the first case, we must record
this correct dependence that is detected early; in the second case,
we must discard it. Since Cyrus does not know which case it is,
it conservatively records it in the initial log. Later, the backend
pass will find which case it is, and either set the destination of the
dependence to be the next Mapp block running on the destination
processor (an action called “deferring the dependence”), or discard
it. In Figure 4(c), we call this action “Record & Defer/Discard”.

Finally, if the destination processor is running a non-monitored
process (srcM ! dstN), the action pertains to unrelated data, and

does not need to be recorded. However, for ease of implementation
as we will see, Cyrus records it as in the previous case.

The next row in Figure 4(c) corresponds to a context switch
where an M process is preempted. After the preemption, data left
in the cache may be requested by other processors. To avoid having
to log such interactions, in a context switch, Cyrus conservatively
records one dependence from this processor to every other proces-
sor in the machine. This is called a serialization because it effec-
tively serializes the last block of the current processor prior to the
context switch before the current block of every other processor.
Cyrus records such dependences in the initial log and the backend
pass will defer or discard them. Specifically, any such dependence
will be discarded if no monitored process ever runs on the destina-
tion processor.

The final two rows in Figure 4(c) correspond to when the source
is a non-monitored process (srcN). In this case, a srcN ! dstM

interaction can be correct, early or unrelated, while a srcN !
dstN interaction is unrelated. Cyrus ignores each of these depen-
dences. This behavior is correct since any such dependence is guar-
anteed to be superseded by one of the serialization dependences
described above.

Overall, as shown in Figure 4(c), to ensure correct application-
level recording, Cyrus only needs to log events when a processor
running the application or OS code of a monitored process is: (i)
either the source of a dependence (i.e., at the request of another
processor, it provides a line from its cache or invalidates a line from
its cache) or (ii) suffers a context switch. Still, we need a later pass
to fix or discard certain dependences.

3.3 Unintrusive Recording Hardware
The Cyrus hardware is shown at a high level in Figure 5. Each
core has a Race Recording Unit (RRU) associated with the cache
controller. For simplicity, we show the RRU for a system with a
single-level cache hierarchy. In this design, the RRU observes the
bus transactions, and is also informed of processor requests and
cache evictions.

P

Cache RRU

Mem Refs

Evictions

Snoops

Network

Figure 5. High-level view of the Cyrus hardware.

To keep the design unintrusive, we require that it does not
change the cache coherence protocol in any way — including, for
snoopy schemes, not adding new fields to messages. As explained

P0 P1

T0

(a)

x =
B0,i-n

B0,i

= x

B1,j

Log:
B0,i size
P1
T0

Data

(c)

P0

x =

P1

= x

D
ep

T
ra

ck
in

g
 W

in
d

o
w

TS Array
BS for last block in cluster Successor Vector (SV)

(f)

Current Block
Completed[1]
Completed[2]

…
Completed[N]

ReadSig WriteSig

Current Block
Completed[1]
Completed[2]

…
Completed[N]

D
ep

T
ra

ck
in

g
 W

in
d

o
w

Time Stamp (TS) Block Size (BS) Successor Vector (SV)

(d)

ReadSig WriteSig

(g)

P0 P1

= x

x =

B
lo

ck
 C

lu
st

er

Block

P0

(b)

P1

= x

B1,j

x =
B0,i-n

B0,i

(e)

P0
B0,i-n

P1

= x
B1,j

x =

Figure 6. Recording dependences in Cyrus.

in Section 2.2.2, the implication for snoopy schemes is that, when
an interprocessor dependence takes place, only the source proces-
sor knows about it and can record it.

Consequently, Cyrus operates as follows. When a processor
(P0) executing a block (B0,i) of a monitored process observes a
bus transaction to which its cache needs to respond (by invalidating
a line and/or providing a line), the RRU hardware is signaled. The
RRU terminates B0,i and (in a naive design) creates a local log en-
try composed of: B0,i’s block size (BS) in number of instructions,
the ID of the processor that initiated the transaction (the depen-
dence’s destination processor), and the current time. Cyrus counts
time as the number of bus transactions so far, which is known by
and is consistent across all processors. We call such number the
Time Stamp (TS). The destination processor is unaware that a de-
pendence has been recorded.

This information is all that Cyrus needs to log, and requires no
modification to the coherence protocol. However, to ease the replay,
we will need to have bidirectional dependence information as in
Figure 2(e). Such information is generated from the initial log by
the backend pass and is stored in the final log (Section 3.5).

3.4 Replay Parallelism
With the naive approach described, the log records an inter-thread
dependence between the blocks that are running when the coher-
ence action is detected. This approach enables only limited replay
parallelism. For example, consider Figure 6(a), where processor
P0 writes to variable x in block B0,i�n and processor P1 reads
x in block B1,j at time T0. The figure also shows the log entry.
Since the coherence action occurs while P0 is executing block B0,i,
the logged entry implies a dependence and a replay order between
blocks B0,i and B1,j as in Figure 6(b) — even though the source of
the dependence is much earlier, and the destination is deep inside
the destination block. To extract maximum parallelism, we would
like the log to represent the execution as in Figure 6(c), where pro-
cessors P0 and P1 overlap their execution as much as possible.

To approach this ideal capability, Cyrus can be designed to
use a small Maximum Block Size and to track multiple blocks
at a time. The idea is for the RRU to keep information for the
most recent N completed local blocks. These completed blocks
plus the currently-running block form the Dependence-Tracking
Window, from which dependence sources are tracked. Each of
these blocks (except for the oldest one) has a read and a write
signature register (ReadSig and WriteSig), which hash-encode with
a Bloom filter [4] the addresses of the lines read or written by the
block (Figure 6(d)). When the local cache responds to an incoming
coherence request, the hardware checks the address of the request
against the signatures in reverse order, starting with the ones for
the currently-running block. When one of the signatures matches
the address, we know that the corresponding block was the source
of the dependence, and record it. This allows us to precisely place
the source of the dependence in the right block. If none of the
signatures matches the address, the oldest of the N completed
blocks is assumed to source the dependence.

If the currently-running block is the source of the dependence,
it is terminated. In this case, all the blocks are shifted up, the old
one is written to the log, and a new one starts. With this support,
the log records the example dependence as in Figure 6(e), where
the source of the arrow is closer to the source access. This enables
more replay parallelism. Karma [3] uses this approach for N=1.

Figure 6(d) shows other fields of each entry in the dependence-
tracking window, which we will discuss later.

Unfortunately, even this enhanced approach has some short-
comings. To have a large dependence-tracking window, N needs
to be high, which means that many pairs of costly signatures are
needed. The alternative is to increase the block size, therefore need-
ing a lower N. In this case, however, the source of the dependence
may be far from the end of the source block, and the destination of
the dependence may be far from the beginning of the destination
block. In the worst case, the source and destination references are
separated by twice the maximum block size.

(b) Initial Log (c) MaxPar (d) Stitched (e) Serial (f) StSerial

(a) Execution

Rd B

Inter-thread
dependence
Intra-thread
order

B00

B01

B02

B10

B11

B20

B21

B22

B30

B00
+

B01

B02

B10
+

B11

B20

B21
+

B22

B30

B00

B01

B02

B10

B11

B20

B21

B22

B30

B00
+

B01

B02

B10
+

B11

B20

B21
+

B22

B30

Rd A
Wr B

…
Wr D

…

…
Rd C

…

…
Rd B
Rd A

…
Wr C

…

…

…
Rd C

…

Wr A
...

…
Rd D

…

T
im

eS
ta
m
p

100

150

200

250

300

350

CPU 0 CPU 1 CPU 2 CPU 3

….

B00

B01

B02

B11

B10 B20

B21

B22

B30

Monitored OS
Execution

Figure 7. Example of execution and resulting Cyrus logs. The table in (b) depicts the initial block data dumped by the processors, while the
other tables show the results of the different backends, encoding the corresponding DAGs. In the tables, dashes indicate entries corresponding
to dependencies to the processor itself. These are never used.

To address this problem, Cyrus introduces the concept of Block
Clusters. Block clusters use the observations that: (i) to reduce the
separation between the beginning of the destination block and the
destination reference, we need small blocks; and (ii) to reduce the
separation between the source reference and the end of the source
block, we need a large dependence-tracking window which, to be
cheap, needs large blocks. Hence, in block clusters, we use small
blocks and combine them to make them appear as large blocks. In
practice, reducing the separation in (i) is more important than in
(ii). The reason is that any separation in (i) directly slows down the
replay execution relative to the recorded execution.

With block clusters, we use a small block size, but we group
multiple consecutive blocks into a cluster for the purpose of track-
ing dependence sources. The RRU’s dependence-tracking window
contains multiple block clusters. Each one has a single ReadSig
and WriteSig signature pair that contains the addresses accessed
by all the blocks in the cluster. If the address of an incoming co-
herence transaction matches the signature, then the source of the
dependence is assumed to be the last block of the cluster.

Figure 6(f) shows the case of four blocks per cluster. When a
block executes and exhausts its maximum size without recording a
dependence, its termination time stamp is stored in TS[i] and the
next block in the cluster starts. Note that for such blocks, Cyrus
does not need to store the size explicitly because it is known to
be the maximum block size. When a dependence is found in the
running cluster’s signatures, the running block is assumed to be the
source; that block is terminated, its time stamp and size (BS) are
saved, and the cluster is terminated. All the cluster information is
shifted up and a new cluster is started. Future dependence sources
found in the signatures of any cluster in the RRUs dependence-
tracking window, are assigned to the last block in that cluster.

With this support, Cyrus provides a large dependence tracking
window, and at the same time, reduces the distance between the
beginning of the destination block and the destination reference.
This is seen in Figure 6(g). The result is more replay parallelism.

3.5 Backend Software Pass
The initial log generated by the recorder has unidirectional depen-
dence information only, and contains some dependences that need
to be fixed-up or discarded for application-level R&R. To correct
these issues, a backend software pass processes the log, creating
a final log that is highly amenable to parallel replay. In addition,
the backend pass can format the log for different tradeoffs between
replay parallelism and log size.

3.5.1 Transforming the Log
Each entry of the initial log contains the following base information
for one block: the ID of the CPU that executed the block and
the block’s termination time stamp (TS). In addition, if this is the
last block of a cluster that sourced dependences, the information
also includes the block size (BS) in number of instructions, and
successor vector (SV). The latter has one entry for each of the other
processors in the machine. SV entry i is either null or has the TS
when the current cluster sourced a dependence to processor i. If the
cluster sourced multiple dependences to processor i, SV[i] has the
TS of the earliest one — which is the most conservative.

Figures 7(a) and (b) show an example execution with 4 pro-
cessors and the resulting initial log, respectively. Each row in Fig-
ure 7(b) indicates a block dumped by the corresponding processor.
In all of the tables in Figure 7, TID is the ID of the thread to which
the block belongs. It is provided by the OS driver that controls the
RRU. The hardware itself is oblivious to the notion of threads (Sec-
tion 4.2).

For simplicity, we assume one block per cluster and two clus-
ters. In Figure 7(a), we can see that, as soon as a processor sources
a dependence for a datum accessed in the current block, it termi-
nates the block. If the dependent datum has not been accessed in
the current block but in past blocks, the current block is not termi-
nated. For example, at TS=200, CPU1 performs “Wr A”. Since this
access does not conflict with block B01 of CPU0, B01 is not cut
and the dependence is assigned to B00, instead.

In Figure 7(a), all the dependences are Correct ones except for
the one from CPU0 to CPU3, which is an Early or an Unrelated
one. In the figure, CPU3 is initially executing the OS on behalf
of the monitored process. The OS accesses variable B, creating
a dependence with processor 0, which terminates its block B00.
According to Cyrus’s operation, it has to record the dependence,
and rely on the backend pass to either defer it or discard it. Since,
as shown in the figure, CPU3 later executes block B30 of the
monitored application, the backend pass sets the destination of
the dependence to be B30 — i.e., defers the dependence. This is
required for correctness, as block B30 could next silently access
variable B. If, instead, CPU3 never executes any block of the
monitored application, the backend pass discards the dependence.

Similarly, if the OS preempts a monitored thread (i.e., on a con-
text switch), it uses the programming interface of the RRU (Sec-
tion 4.2) to create Serialization dependences with all other proces-
sors; they are eventually deferred or discarded by the backend pass.

As the backend pass processes each entry of the initial log,
fixing up and discarding dependences, it also records, in each
dependence’s destination block, which other block is the source.
Encoding such bidirectional dependence information will enable
parallel replay. Hence, it incrementally builds the dependence DAG
that captures all the necessary ordering of blocks for a deterministic
replay.

To encode the resulting DAG in the final log, we adopt and
generalize the representation used by Karma [3], in which, instead
of representing dependences as source-destination block pairs, we
use a token-based representation. Assume a dependence between
block B1 of processor P1 to block B2 of processor P2. To enforce
the dependence during the replay, the log will have B1 send a token
to P2 after its execution, and B2 wait for a token from P1 before
starting. Both source and destination are processor numbers rather
than block numbers.

Our baseline backend pass algorithm and the resulting trans-
formed log are called MaxPar because they expose maximum re-
play parallelism obtainable from the initial log. An entry in the
MaxPar log contains the following information for a block: the IDs
of the CPU and thread that executed it, its size, the Successor To-
ken Vector (STV), and the Predecessor Token Vector (PTV). The
STV is a bit vector with as many bits as other processors. Bit i is
set if a successor of the block is in processor i. The PTV is an ar-
ray of counters with as many entries as the STV. Entry i counts the
number of predecessors that the block has in processor i. For our
example, the resulting MaxPar log and execution DAG are shown
in Figure 7(c).

With the MaxPar log, replay will involve processors execut-
ing in parallel, synchronizing only on dependences — figuratively
passing tokens between them. In the following, we outline the Max-
Par algorithm and then consider other algorithms.

3.5.2 MaxPar: Algorithm for Maximum Parallelism
In this discussion, we call a block open while it still has unresolved
successors or predecessors, and resolved otherwise. After a block
becomes resolved, the backend can write it to the transformed log
as soon as all of the previous blocks of the same processor are
written. After writing, we say the block is retired.

Figure 8 shows the high-level pseudocode of the algorithm.
Each processor is represented by a proxy object. A proxy keeps
track of its open blocks in a chronologically ordered list. Also, it
keeps a data structure (called waitingList) for blocks of other prox-
ies that, according to their Successor Vectors (SV), have unresolved
successors in this proxy.

The algorithm processes blocks in batches of consecutive blocks
from the same processor. When a new block is added to proxy
P, its SV is checked, and for each successor, the block is added

AddBatch(batch, proxy):
for each block b in the batch

for each valid successor processor s in b.sv

/* call sp the proxy for processor s */
add b to sp.waitingList[proxy]

foreach other proxy op in the system:
foreach block b in proxy.waitingList[op]

find dep

/* dep is the block in proxy that is the successor of b */
if (dep is not NULL)

remove b from proxy.waitingList

mark this dependence as resolved in b

update b.STV and dep.PTV

if enough time has passed since last trimming
Trim()

Trim():
for each proxy p in the system

for each block b in p

if b is old enough and all its predecessors are retired
write b to the transformed log
remove b from p

MaxPar():
while (there are batches)

batch next batch
AddBatch(batch, proxies[batch.cpu])

Figure 8. High-level description of the MaxPar algorithm.

to the waitingList of the proxy for that successor. Next, since a
new batch has been added to P, blocks in the waitingList of P are
checked to see if their dependences can be resolved. To resolve
a dependence that was recorded at time t, the open blocks of P
are binary-searched to find the first block whose time stamp is
larger than t. This block is the destination of the dependence. The
dependence is recorded by setting the appropriate entry in the STV
of the source block and incrementing the corresponding entry in
the PTV of the destination block. As dependences are resolved,
periodically, a trimming pass is run to retire the resolved blocks
from the proxies by writing them to the transformed log. Before
writing a block to the log, MaxPar tries to merge it with the previous
block of the same processor, if that does not reduce the recorded
parallelism. Specifically, assume that the previous block is B0 and
the current block is B1. If B0 has no successors (other than B1)
and B1 has no predecessors (other than B0), merging B0 and B1

will not change the recorded parallelism.
There are some details that are not shown in Figure 8. One

difficulty is how to tell whether all the predecessors of a given
block have been seen and resolved. Processors dump their block
data independently and in batches (not one by one) and it is quite
possible that when a block is dumped, some of its predecessors are
still in their respective processors.

The solution here is to make sure block data do not indefinitely
reside in processor buffers and will be dumped if they have been
around for a preset amount of time, called Maximum Silence Pe-
riod (or MSP) — e.g., 100000 timestamp units. Consider block Bi

of proxy Pi. With the above guarantee, which we call the Bounded
Silence guarantee, if the maximum timestamp of all the blocks
dumped so far is larger than Bi.ts+MSP , then we know for sure
that all the predecessors of Bi have also been dumped and their de-
pendencies have been resolved (please recall that the predecessors
of Bi have smaller timestamps than Bi itself). At this time, we can
consider Bi to be old enough (Figure 8) to be retired.

Another important question concerns Early or Unrelated depen-
dencies (See the table in Figure 4). Assume Bi records Pj as a
successor but, since Pj is not running any monitored threads, it

will not dump any blocks for a long time (or maybe forever). How
should the recorded dependence be resolved?

To handle this case, again, we use the Bounded Silence guar-
antee. If Bi recorded the dependence at time t and Pj dumps no
blocks before time t + MSP , then it is guaranteed that no mon-
itored block existed on Pj at time t. Hence, it suffices to attribute
the dependence to the next dumped block of Pj , or it can be safely
discarded if Pj never dumps. The token-based representation en-
ables an efficient implementation in this case. Each proxy, Pj in
this example, has a vector of counters which count the number of
Early dependences from other processors (Pi in this case). Let us
call this vector the Early Token Vector. At time Bi.ts+MSP , Bi

can consider its dependence resolved and send an Early token to Pj

by incrementing entry i of the Early Token Vector in Pj . When the
next block of Pj is dumped, the counters in the Early Token Vector
are added to the PTV of that block and then they are reset.

The MSP-based techniques described above imply that, at time
Bi.ts + MSP , Bi is old enough (term used in Figure 8) to be
retired, since all of its predecessors and successors are guaranteed
to have been resolved by that time.

3.5.3 Trading-off Replay Parallelism for Log Size
As the backend pass generates the final log, it can transform it in
ways that affect the size of the log and the potential for parallelism
in its replay. This provides substantial flexibility (Figure 9). For ex-
ample, when R&R is used for on-line intrusion analysis or fault tol-
erance, it typically requires high-speed replay. In this case, the log
format should be such that it enables highly-parallel replay. Such
format is MaxPar. On the other hand, when R&R is used for (off-
line) software debugging, replay speed is less important. Hence, we
likely prefer a format that needs less log space at the expense of of-
fering less parallelism. Such format is called Stitched. This format
is also suitable for intrusion analysis or fault tolerance when the
application is I/O- or memory-intensive. This is because, in such
scenarios, replay is typically faster than recording. Finally, when
small log size is paramount, even at the expense of replay speed,
the Serial or StSerial formats should be used. In the following, we
discuss these formats.

Initial
Log

MaxPar StitchedSerial

Backend
Pass 1 Backend

Pass 2

Backend
Pass 3

StSerial

Offline Processing

Figure 9. Flexibility of the backend pass.

Stitched: Reduced Parallelism. The Stitched format uses less
log space than MaxPar, but it offers less parallelism for replay.
Compared to MaxPar, Stitched merges consecutive blocks of an
application thread into a Stitched block as long as this process does
not introduce cycles in the graph.

Accurately detecting cycles on-the-fly can be computationally
intensive. There are conservative techniques that can be used in-
stead. One such technique involves using Lamport Scalar Clocks.
Specifically, each block is assigned a clock that should be strictly
larger of those of its predecessors. While merging a sequence of
consecutive blocks into a stitched block SB, the algorithm watches

the clock values of the all the predecessors of the blocks in SB. As
long as all of these predecessors have clock values not larger than
that of the first block in SB, no cycle can be created and we can
safely merge the blocks. If, however, one of the predecessors of the
next block to stitch violates this condition, we stop merging and
start a new block sequence.

Figure 7(d) shows the Stitched execution DAG and log for the
example in Figure 7(a). Compared to the MaxPar algorithm (Fig-
ure 7(c), we have combined blocks into bigger blocks, hence reduc-
ing the number of log entries but also decreasing the parallelism of
the DAG available to the replayer.

Serial: Sequential Replay. When having a very small log is very
important, even at the expense of any parallelism in the replay,
we use the Serial format. In this case, we create a total order of
blocks. This format is generated with a simple topological sort on
the dependence DAG. It can be generated either on-the-fly in the
backend or off-line after the MaxPar log has been created. Each
serial log entry only needs to contain the thread ID and the size of
a block — the rest of the information is unnecessary.

Figure 7(e) shows the Serial execution DAG and log for the
example in Figure 7(a). Compared to the MaxPar algorithm (Fig-
ure 7(c)), we have created a total order of blocks, disabling any
parallel replay, but substantially reducing the log size.

StSerial: Stitched Sequential Log. Finally, we can reduce the log
size even more if we apply the Serial algorithm to a DAG generated
by Stitcher. The result is called StSerial. Compared to MaxPar, we
reduce both the number of log entries and the size of each of them.
The replay is also serial. Figure 7(f) shows the StSerial execution
DAG and log for the example in Figure 7(a).

Advanced Uses. Other flexible uses of the backend pass are pos-
sible. One use is for the backend to dynamically change the format
of the log at different phases of a program’s execution. This sce-
nario may be useful when R&R is used in online-replay scenarios
(e.g., fault tolerance) where a secondary server follows the execu-
tion of a primary one. To reduce the bandwidth required to transfer
the log from the primary to the secondary server, the backend may
usually use the Stitched format. However, in sections of the pro-
gram when fast replay is needed (perhaps because the execution
becomes compute intensive), the backend may switch to MaxPar.

Once can also think of a transformation to reduce the number
of processors in the log. The transformation involves combining
the entries from two or more processors into one. In practice, this
transformation is unlikely to be useful since (i) it does not change
the number of log entries and just reduces the size of PTV and STV,
and (ii) the replay can already be done with fewer processors than
used for recording, even with an unmodified log; we only need that
a replay processor execute blocks from multiple recording ones.

4. Implementation Issues
4.1 Race Recording Unit (RRU) Design
The Cyrus hardware consists of a Race Recording Unit (RRU) asso-
ciated with the cache controller of each processor (Figure 5). When
a processor is executing a monitored process, if its cache observes
a bus transaction that induces a dependence with data previously
accessed by the processor, the RRU records that dependence.

Figure 10 shows the hardware inside the RRU. It has four com-
ponents: Tracked Block-Cluster Buffer, Block-Cluster Buffer, Time
Counter, and Eviction Signature. The Time Counter is the global
clock, obtained by counting the number of coherence transactions
on the bus. It has the same value in all the cores.

The Tracked Block-Cluster Buffer (TBCB) implements the
dependence-tracking window described in Section 3.4. It contains
information about several block clusters: the currently-running one

TS[], BS, SV . . .

Block Cluster Buffer (BCB)

Eviction Signature (ES) Time Counter

Last Tracked Block Cluster
Running Block Cluster

TS: Time Stamp
BS: Block Size
SV: Successor Vector

TS[], BS, SV TS[], BS, SV

TS[], BS, SV, ReadSig, WriteSig
TS[], BS, SV, ReadSig, WriteSig

TS[], BS, SV
Tracked Block Cluster Buffer (TBCB)

Block
Clusters

Figure 10. Race Recording Unit (RRU) design.

(Running in Figure 10) and the N most recently-completed ones.
Of these, the earliest one is called Last Tracked in Figure 10. All
block clusters in the TBCB except for the Last Tracked one have
read and write signature registers. These registers hash-encode and
accumulate with a Bloom filter [4] the addresses of all the lines
read or written by all the blocks in the corresponding block cluster.

To understand how the TBCB works, assume first that there
is no cache overflow; we consider cache evictions later. When a
request on the bus hits in a cache, the cache’s RRU checks the
requested address against the signature registers in its TBCB —
a bus write is checked against read and write signatures, while a
bus read only against write signatures. The checks are performed
in order, starting with the signatures of the Running cluster and
proceeding to older clusters. The goal is to find which cluster is the
latest source of the dependence.

If there is a hit in the signatures of the Running cluster, the
current time stamp is saved in the cluster’s Successor Vector (SV)
entry for the requesting processor. Moreover, the cluster terminates
and the current block size is saved in the cluster’s BS field. In
addition, the whole TBCB is shifted upward, pushing the contents
of the Last-Tracked cluster into the Block-Cluster Buffer and a new
Running block cluster begins.

If, instead, there is a hit in the signatures of an older cluster
in the TBCB, we save the current time stamp in that cluster’s SV
entry for the requesting processor. Finally, if instead, the request
does not hit in any signature, we conservatively assume that the
Last Tracked cluster is the source of the dependence. In this case,
we save the current time stamp in that cluster’s SV entry for the
requesting processor. In all cases, if the corresponding SV entry is
already set to a smaller timestamp, we do not update it.

The case when processor P0 writes a variable, then P1 reads it
and then P2 reads it, correctly triggers the logging of a dependence
P0!P2 (in addition to P0!P1). The reason is that, although the
P2 read does not induce any coherence operation on P0’s cache,
P0’s cache hits and, as a result, P0’s write signatures are checked.
If the P0 write occurred during its Last Tracked cluster, there is
no signature, but Cyrus still records a dependence by default. This
would be conservative (although correct) if P0 had only read, not
written. Fortunately, recording conservative dependences so far in
the past is not expected to hurt replay parallelism.

If the current block in the Running cluster reaches its maximum
size without sourcing a dependence, it terminates, saving the cur-
rent time stamp in the corresponding TS field of the Running clus-
ter. Then, a new block starts. If all the blocks of the Running cluster
have been exhausted, the cluster terminates, and the whole TBCB is
shifted upward. As information on an old cluster is displaced from
the tail of the TBCB, it is dumped into the Block Cluster Buffer
(Figure 10). When the Block Cluster Buffer is about to fill up, its
contents are appended to the tail of an in-memory buffer provided
by the operating system (Section 4.2).

4.1.1 Eviction Signature
Caches suffer line evictions. In the design presented, when a cache
evicts a line, its RRU loses the ability to record inter-processor
dependences on data from that line. Indeed, future bus transactions
on that line would not find the data in the cache and, therefore
would not trigger checks in the dependence-tracking window.

To eliminate this problem, when a clean or dirty line is evicted
from a cache, Cyrus hash-encodes and accumulates its address
into the RRU’s Eviction Signature (ES) (Figure 10). Then, when a
transaction is observed on the bus, Cyrus checks if the address hits
in the cache or in the ES. If it hits in at least one, Cyrus proceeds
with checking the block clusters in the TBCB.

The ES should be regularly cleared to avoid collecting many
addresses that could cause address aliasing. Fortunately, every time
that the OS preempts a thread that is being monitored, the local
RRU records a Serialization dependence with all other processors
in the system (Section 3.2). At that point, the ES can be cleared.
Also if, at any time, the ES contains too many addresses, Cyrus
simply terminates the current block, records a dependence from it
to all the other processors, and clears the ES.

4.2 OS Design for R&R
Figure 11 shows the overall architecture of our R&R system, where
the dashed boxes indicate the Cyrus extensions. We base our de-
sign on that of Capo [24]. The Replay Sphere Manager (RSM) is
the basic kernel module that controls R&R. We organize the OS ex-
tensions according to the sources of non-determinism. Hence, we
have two components: one for input non-determinism and one for
memory-interleaving non-determinism.

!"#$%&'(#)"*"'

+%,%-"*

!"./*0"0'

1##

!"#$#%&'(!)(*+"%+'

!!"

#$%$&'()

#$%$&(*

!"#$%&

'()

+

'()

+ , -

,

.

+ ,-()-.*&!"#$%/0&/1/2.''/3&/!)".'/3&+%24

. 52%$.'&+6+2$%!("&(7&/1/2.''/3&/!)".'/3&+%24

, 8"!%!.'&!"%+-'+.9!")&'()

/ :-."/7(-*+;&!"%+-'+.9!")&'()

- 8"#$%&'()

-

/

!
"
#
$
%&
'
(
)
#

*
#
$
+
#
,

-
(
$
.
/
(
$
#

!
"
#
$
%
"
&
'

(
)
*
+
%
,
-

Figure 11. Overall architecture of our R&R system, where the
dashed boxes are the Cyrus extensions. The numbers correspond
to the generation of logs during recording.

We use a driver program to launch a R&R sphere to perform
record or replay. In record mode, the RSM generates the input
log, while the RRUs generate the memory-interleaving log. The
data transfers proceed as shown with numbers in the figure. As
the initial memory interleaving log is generated, the backend pass
runs on a dedicated processor and transforms it. In replay mode,
the driver reads the input and memory interleaving logs and passes
them to the RSM, which consumes them. In addition, the RSM uses
performance counters to detect block termination, as we will see.

4.2.1 Input Non-Determinism Module
This module is similar to Capo’s [24]. There are four different
sources of input non-determinism that Cyrus handles: system
calls, data copied to/from the user address space, signals, and
non-deterministic processor instructions. Unlike Capo, which uses
ptrace, we have implemented this component as a Linux kernel
module to improve the performance and make it easier to integrate

with the memory-interleaving module. Since this module uses per-
thread data structures, it is easy to support multiple replay spheres
simultaneously.

4.2.2 Memory-Interleaving Non-Determinism Module
Using the RRU at Record Time. As the RRU generates the log, it
dumps it into an OS-allocated block of memory called bmem. The
RRU offers a minimal interface for the OS to manage and virtualize
the hardware during recording. This interface contains: (i) a pointer
to bmem (bmem ptr), and (ii) a threshold register that indicates
the point at which bmem is about to overflow (bmem th). When
bmem th is reached, an interrupt is triggered, and a new bmem is
allocated.

The OS manages the per-thread bmem areas and virtualizes
these hardware registers, so that different threads can use the hard-
ware without mixing up their data. In particular, this involves mak-
ing sure that a valid bmem ptr is configured before recording be-
gins, allocating a fresh bmem when the previous one is full, and
ensuring that, on a context switch, all the recorded data is dumped
into the bmem and a Serialization dependence is recorded. This is
done by writing to a RRU-specific control register. Also, the OS ap-
pends to each bmem buffer the ID of the thread to which the blocks
in the buffer belong. Thus, the RRU itself does not need to know
about threads.

Enforcing the Recorded Interleavings during Replay. The OS is
able to recreate the recorded interleavings by allowing each block
to start its execution only after all of its predecessors have executed.
For this, it uses mechanisms to detect block termination and to
synchronize predecessor/successor blocks.

To detect block termination, Cyrus uses performance counters
similar to those available in commodity processors. The replaying
thread configures the counter so that an interrupt is triggered when
the number of instructions executed equals the needed block size.
Cyrus assumes synchronous and precise interrupts for this, i.e., the
interrupt is generated just before the first instruction of the next
block is executed.

To synchronize predecessor/successor blocks, Cyrus uses a soft-
ware solution. When a block finishes, it should send tokens to
its successors, and before the next block starts, it should wait for
enough tokens from its predecessors. Cyrus implements this in the
RSM (i.e., in the OS and without modifying the application code)
using software semaphores. There is a semaphore for each (Pi, Pj)
pair of different record-time processors. This semaphore represents
tokens sent from Pi to Pj . After a block terminates, the OS first
sends tokens to the appropriate semaphores for its successors. It
then reads the next block from the memory-interleaving log and
for each recorded predecessor, it uses the appropriate semaphore to
wait until enough tokens are received from that predecessor.

5. Evaluation Setup
For our evaluation, we augmented the Linux 3.0.8 kernel with a
Replay Sphere Manager (RSM). The OS drives and virtualizes the
Cyrus architecture modeled with the Simics [22] full-system sim-
ulator. The OS changes include the input non-determinism module
and the memory-interleaving non-determinism module that man-
age the two logs.

We use Simics to model an x86-based chip multiprocessor with
a single level of private caches that are kept coherent using a
snoopy-based MESI cache coherence protocol. Table 1 shows the
parameters of the architecture. Unless explicitly specified, we per-
form the parallel record and replay runs with our applications run-
ning on 8 processors. The backend pass uses one additional pro-
cessor. The baseline RRU configuration uses blocks with at most
4K instructions. It has 2 tracked block clusters (N = 1), and hence

Processor and Memory System Parameters

Chip multiprocessor Bus-based with snoopy MESI protocol
8 proc. for application; 1 for backend

Processor Single issue, x86 ISA
2GHz clock

L1 Cache 64KB size, 64B line, 4-way assoc.
1 cycle hit, 2-bit LRU replacement

L1 Cache Miss Latency 10-cycle round-trip to another L1
100-cycle round-trip to memory

Cyrus Parameters
Read & write signature 4⇥512bits & 4⇥256bits H3 Bloom filter
Eviction signature 4⇥512bits H3 Bloom filter
Tracked block-clusters 2
Blocks per block cluster 16
Maximum block size 4K instructions
Block cluster buffer (BCB) 8 entries

Table 1. Parameters of the simulated hardware.

we only need one pair of signatures per RRU. We use 16 blocks
per cluster. We execute 10 applications from the SPLASH-2 suite,
which we run from beginning to end.

6. Evaluation
6.1 Recording & Backend Overhead
We first examine the initial log size and whether it can become a
bottleneck for Cyrus. Figure 12 shows the growth in the rate of
the initial log generation as the number of processors increases.
This is a temporary log and, hence, it is not compressed. The time
unit in this figure is 1K cycles of total execution time (i.e., 0.5
µsec assuming a 2GHz clock). On a system with 8 processors,
this means 8K-cycles worth of instruction execution. As seen in
the figure, on average, the logging rate grows about linearly with
the number of processors. However, a simple calculation shows
that even with 8 processors, the average log generation rate is
less than 29 MByte/sec. This is far less than the bandwidth of the
system bus in current machines (which is typically on the order of
several GByte/sec). For this reason, it is not likely that the initial
log generation can become a bottleneck.

ba
rn

es fft

fm
m lu

oc
ea

n

ra
dio

sit
y

ra
dix

ra
ytr

ac
e

wa
te

r_
n2

wa
te

r_
sp

at
ial

[a
ve

ra
ge

]0.0

20.0

40.0

60.0

80.0

100.0

Bi
ts

 p
er

 1
K

C
yc

le

1P 2P 4P 8P

13
4

11
4

10
4

13
2

13
2

15
2

15
7

11
5

Figure 12. Initial log size for different numbers of processors,
shown in terms of the number of bits generated per 1K cycles of
total execution time.

Figure 13 examines the overhead of recording with and with-
out the backend. The figure compares the execution time of the
benchmarks when the Cyrus hardware is not enabled (NoMemLog),
when Cyrus records the memory-interleaving log (MemLog), and
when, in addition, the backend pass runs (MemLog+Backend). In
all cases, the RSM is recording the input non-determinism log. For
each benchmark, the bars are normalized to NoMemLog. The ap-
plications execute with 8 processors.

ba
rn

es fft

fm
m lu

oc
ea

n

ra
dio

sit
y

ra
dix

ra
ytr

ac
e

wa
te

r_
n2

wa
te

r_
sp

at
ial

[a
ve

ra
ge

]0
20
40
60
80

100
120

Ex
ec

ut
io

n
Ti

m
e

(%
)

NoMemLog MemLog MemLog+Backend

Figure 13. Overhead of recording with and without the backend
pass for 8-processor runs.

The figure shows that the overhead of recording the memory-
interleaving log, either with or without the backend pass, is neg-
ligible. The backend pass induces little overhead because it uses
a dedicated processor. While this fact increases the system cost, it
allows Cyrus’ R&R to be non-intrusive to the hardware.

6.2 Comparing Different Backend Pass Algorithms
We now compare the different Cyrus’ backend pass algorithms. We
compare the available replay parallelism and the log size of the
Serial, StSerial, Stitched, and MaxPar formats (Figures 14 and 15).
To estimate the available replay parallelism, we use the Normalized
Inverse Critical Path Length (NICPL) of the dependence graph
in the log. To measure the NICPL of a benchmark, we start by
computing the length of the longest chain of dependences (in terms
of number of instructions) in the log. This is the critical path length.
Then, we divide the critical path length obtained with a fully-serial
log like Serial or StSerial (which is the number of instructions in
the benchmark) by the critical path length obtained with a given
log. The result is the NICPL of the log. Thus, a higher NICPL value
indicates more parallelism in the recorded dependence graph.

Figure 14 compares the NICPL values for the Serial, StSerial,
Stitched, and MaxPar formats. We can see that, on average, MaxPar
and Stitched provide a replay parallelism of 5 and 3, respectively.
Most of the applications can benefit considerably from MaxPar and,
to a lesser extent, from Stitched.

ba
rn

es fft

fm
m lu

oc
ea

n

ra
dio

sit
y

ra
dix

ra
ytr

ac
e

wa
te

r_
n2

wa
te

r_
sp

at
ial

[a
ve

ra
ge

]0
1.0
2.0
3.0
4.0
5.0
6.0

N
or

m
al

iz
ed

 In
ve

rs
e

C
PL

 (N
IC

PL
) Serial StSerial Stitched MaxPar

Figure 14. Normalized Inverse Critical Path Length (NICPL).

Figure 15 shows the resulting size of the logs. We compressed
the logs with bzip2 and report the number of bits used per 1K in-
structions. We see that, on average, MaxPar and Stitched gener-
ate about 2 bits/Kinstruction, while Serial and StSerial generate 1
bit/Kinstruction. Stitched is not capable of considerably reducing
the log size over MaxPar’s because, as mentioned in Section 3.5.2,

MaxPar already merges many of the recorded blocks while re-
taining maximum parallelism. On the other hand, StSerial is only
slightly more space efficient than Serial. Finally, the figure shows
that water spatial produces large log files. This is because it syn-
chronizes frequently, which creates many small blocks.

ba
rn

es fft

fm
m lu

oc
ea

n

ra
dio

sit
y

ra
dix

ra
ytr

ac
e

wa
te

r_
n2

wa
te

r_
sp

at
ial

[a
ve

ra
ge

]0.0

2.0

4.0

6.0

8.0

10.0

Bi
ts

 p
er

 1
K

In
st

ru
ct

io
ns

Serial StSerial Stitched MaxPar

Figure 15. Log size in bits per 1K instructions.

Overall, comparing MaxPar to Serial, we conclude that, with
a 2x bigger log, MaxPar delivers a 5x higher parallelism. This is
likely to be a very good tradeoff in some R&R applications. On
the other hand, Stitched is not a desirable design point. With a
2x bigger log than Serial, it only delivers a 3x higher parallelism.
StSerial is only slightly better than Serial.

6.3 Replay Execution Time
We now compare the replay execution time of the benchmarks un-
der a variety of scenarios. We start with the MaxPar log with dif-
ferent block sizes. Figure 16 shows the replay execution time for
maximum block sizes equal to 1K, 4K, 16K, and 64K instructions.
In all cases, there are 2 block clusters and 64K instructions per
cluster. Thus, there are 64, 16, 4, and 1 blocks per cluster, respec-
tively. The plot is normalized to the execution time of recording
with 64K-instruction blocks (the recording time for all the other
scenarios is practically the same). We can see that, in general,
replay execution time is comparable to recording time, even for
these communication-intensive benchmarks. On average, with 1K
blocks, replay takes only 50% longer than recording, while with
4K blocks, it takes only 60% longer. As we increase the block size,
replay time increases. This is largely because there is less replay
parallelism with big blocks.

ba
rn

es fft

fm
m lu

oc
ea

n

ra
dio

sit
y

ra
dix

ra
ytr

ac
e

wa
te

r_
n2

wa
te

r_
sp

at
ial

[a
ve

ra
ge

]0.0

0.8

1.6

2.4

3.2

4.0

N
or

m
al

iz
ed

 R
ep

la
y

Ti
m

e

record replay-1K replay-4K replay-16K replay-64K

5.
47

4.
08

Figure 16. Replay execution time with the MaxPar log for differ-
ent block sizes.

Figure 17 shows how the logs of the different backends (Max-
Par, Stitched, StSerial, and Serial) affect the replay execution time.
For this experiment, we use the baseline RRU configuration of Sec-
tion 5. As usual, the figure shows the replay times normalized to the

recording execution time. As expected, the less-parallel logs cause
an increase in the replay execution time. On average, we see that
with MaxPar and Stitched, it takes about 60% and 100% longer,
respectively, to replay than to record. Replaying in StSerial and Se-
rial takes, on average, about 7 and 12 times longer, respectively,
than recording. The relative speeds of MaxPar, Stitched, and StSe-
rial largely match the parallelism numbers provided by the NICPLs
in Figure 14. Serial, however, is much slower. The reason is that,
in the current implementation, Serial does not try to merge blocks
before writing them to the log, since this may cause replay dead-
locks (we omit the discussion of why this is the case in the interest
of space). Hence, it has a high overhead passing tokens, which is
done with semaphores.

ba
rn

es fft

fm
m lu

oc
ea

n

ra
dio

sit
y

ra
dix

ra
ytr

ac
e

wa
te

r_
n2

wa
te

r_
sp

at
ial

[a
ve

ra
ge

]0

10.0

20.0

N
or

m
al

iz
ed

 R
ep

la
y

Ti
m

e record rep-MaxPar rep-Stitched rep-StSerial rep-Serial

Figure 17. Replay execution time with logs from different back-
ends for a 4K block size.

An important feature of application-level R&R is the ability to
replay on machines that have different architectures and, in partic-
ular, different processor counts than the recording machine. In Fig-
ure 18, we show the effect of using fewer processors to replay than
were used to record. The recording run used 8 processors, while
the replay executes a MaxPar log on 8, 4, 2 or 1 processors. In each
case, the 8 threads of the application have to be multiplexed over
the available number of processors and synchronize by passing to-
kens around. The figure compares the execution times normalized
to the recording time. As shown in the figure, the replay becomes
progressively slower, but not exceedingly so. The amount of slow-
down is a function of the number of replay processors as well as the
parallelism that existed in the original execution and was captured
in the MaxPar log.

ba
rn

es fft

fm
m lu

oc
ea

n

ra
dio

sit
y

ra
dix

ra
ytr

ac
e

wa
te

r_
n2

wa
te

r_
sp

at
ial

[a
ve

ra
ge

]0.0

2.0

4.0

6.0

8.0

10.0

N
or

m
al

iz
ed

 R
ep

la
y

Ti
m

e

record replay-8P replay-4P replay-2P replay-1P

Figure 18. Replay execution time with a lower processor count
than during recording.

Finally, Figure 19 breaks down the execution time of replay
with the MaxPar log. For each benchmark, the bars are normal-
ized to 100 and broken down into: time spent executing user mode
instructions (user), time when the OS is executing on behalf of the

application, such as servicing system calls (kernel), overhead as-
sociated with handling the input log (input log overhead), over-
head associated with handling the memory interleaving block log
(block log overhead), time spent waiting for tokens from predeces-
sor blocks (wait for pred), and time that could not be classified as
one of the above (other). The latter is mostly application-level load
imbalance — e.g., when some application threads are waiting on a
barrier while other threads have not yet arrived at that barrier.

ba
rn

es fft

fm
m lu

oc
ea

n

ra
dio

sit
y

ra
dix

ra
ytr

ac
e

wa
te

r_
n2

wa
te

r_
sp

at
ial0

20

40

60

80

100

R
ep

la
y

Ti
m

e
(%

)

user
kernel

input log overhead
block log overhead

wait for pred
other

Figure 19. Breakdown of the replay execution time with the Max-
Par log for 4K blocks.

The figure shows that the benchmarks exhibit very different be-
haviors. However, if we focus on the overheads — i.e., the cate-
gories other than user and kernel — we see that other and wait for
pred are often dominant. The other category typically implies that
there is load imbalance, and little can be done. For example, FFT
has a long initialization phase that causes load imbalance. The wait
for pred category appears in many benchmarks. They suffer consid-
erable slowdowns just because of waiting for tokens. This suggests
focusing on recording more parallelism, possibly with more aggres-
sive techniques. Also, utilizing special hardware support (rather
than using semaphores and an all-software solution) for token pass-
ing during replay may significantly reduce this overhead for some
applications.

6.4 Dependence-Tracking Window Analysis
In this section, we compare different organizations of the dependence-
tracking window, using replay parallelism (i.e., NICPL) as our met-
ric. Figure 20 shows the NICPLs for different designs, represented
as I ⇥ J ⇥K, where I is the number of block clusters (including
the last one, with no signatures), J is block size, and K is the num-
ber of blocks per block cluster. Recall that the tracked window size
equals I ⇥ J ⇥K.

ba
rn

es fft

fm
m lu

oc
ea

n

ra
dio

sit
y

ra
dix

ra
ytr

ac
e

wa
te

r_
n2

wa
te

r_
sp

at
ial

[a
ve

ra
ge

]0

1.0

2.0

3.0

4.0

N
or

m
al

iz
ed

 In
ve

rs
e

C
PL

 (N
IC

PL
)

2x64Kx1 2x4Kx1 3x4Kx1 2x4Kx16

Figure 20. Effect of different organizations of the dependence-
tracking window on parallelism. I ⇥ J ⇥ K stands for I block
clusters, J block size, and K blocks per cluster.

In the figure, higher bars are better. The figure is normalized to
the NICPL of 2 ⇥ 64K ⇥ 1, which can track a window of 128K.
If we reduce the block size to 4K (second bar), we increase the
NICPL even though the window is now only 8K. This design is
better because small blocks improve parallelism. If we increase the
number of clusters to 3 while keeping the block size to 4K (third
bar), we improve NICPL significantly because the tracked window
increases to 12K, but at the cost of an extra set of signatures.
Finally, if we keep the clusters to 2 and the block size to 4K but use
16 blocks per cluster (last bar), we have nearly the same NICPL. We
have a less precise tracking with only 2 clusters, but have a larger
tracked window size. Moreover, we need no extra signatures. This
is the most competitive design and we use it as default.

7. Related Work
Deterministic R&R has been the subject of a vast body of research
work. Software-based solutions assume no special hardware sup-
port. Instead, they rely on modified runtime libraries, compilers,
operating systems and virtual-machine monitors to capture sources
of non-determinism. Russinovich and Cogswell [32] propose to
modify the OS scheduler to record thread interleaving in a unipro-
cessor. Recap [27] takes a compiler-based approach, where the
compiler inserts some code before every read operation that may
touch shared data. LeBlanc and Mellor-Crummey [18] use Reader-
Writer locking for shared memory accesses to log an execution.
Agora [12] uses write-once memory and a history log for maintain-
ing the correct state of a program. DejaVu [8] records the schedul-
ing decisions of a Java Virtual Machine to enable deterministic re-
play of multi-threaded Java applications on uniprocessors. Bres-
soud and Schneider [5] and ReVirt [10] use a modified hypervisor
to replay single processor virtual machines. Dunlap et al. [11] ex-
tend ReVirt to multiprocessor virtual machines. Flashback [33] fo-
cuses on application-level R&R for debugging, and captures only
the interactions between the application being debugged and the
operating system, like system calls and signals, instead of log-
ging everything. PinPlay [29] is another software-only approach
based on the Pin dynamic instrumentation system. It uses Pin for
both recording and replay. Scribe [16] uses the virtual-memory
page-level access control mechanisms to capture the interleaving
of shared memory accesses. Although the paper reports reason-
able overheads for system applications with low levels of sharing,
it is not clear how it will perform for sharing- and synchronization-
intensive programs.

These software-based approaches are either inherently designed
for uniprocessor executions or suffer significant slowdown when
applied to multiprocessor executions. DoublePlay [34] made efforts
to make replay on commodity multiprocessors more efficient. It
timeslices multiple threads on one processor and then runs multiple
time intervals on separate processors. Hence, it only needs to record
the order in which threads in each time interval are timesliced on
the corresponding processor. This technique eases logging by only
requiring the logger to record the order in which the time slices
are executed within a time interval. However, DoublePlay uses
an additional execution to create checkpoints off which multiple
time intervals can be run in parallel. It also needs to use modified
binaries (in particular, a modified libc) for efficient execution.

ODR [2] and PRES [28] are probabilistic replay techniques for
reproducing concurrency bugs. The idea is to record only a subset
of non-deterministic events required for deterministic replay (to re-
duce the recording overhead) and use a replayer that searches the
space of possible executions to reproduce the same application out-
put or bug, respectively. Respec [20] targets online replay scenar-
ios. It records a subset of non-deterministic events and uses the on-
line replay run to provide external determinism. The idea is to retry

the execution from the last checkpoint when a divergence happens.
Like DoublePlay [34], it needs to use modified binaries.

Hardware-based solutions usually use hardware to record mem-
ory races to reduce the overhead of R&R for multiprocessor execu-
tions. Past work on memory race recording has largely concentrated
on directory-based schemes (e.g., [3, 13, 23, 24, 36, 37]). There
is work on snoopy protocols [26, 30, 31], but the designs require
modifications to the cache coherence protocol hardware. Specifi-
cally, Strata [26] requires that all the processors agree to start a
new stratum (or logging epoch) at regular intervals. This is done by
augmenting the messages with a Log Stratum bit, which can be set
by the processor initiating the miss or by a processor that provides
the data. Strata uses a recording approach that requires that all pro-
cessors record an entry in their logs at the same time, which does
not scale well with the processor count. In the MRR [30] and Cor-
eRacer [31] systems, every time that a block commits, the event is
broadcasted with a bus transaction. The design uses Lamport clocks
to order the blocks and does not provide much parallelism.

FDR [36] and RTR [37] are among the very first race recording
techniques proposed. They record dependences between pairs of in-
structions and, thus, can record parallel dependence graphs. How-
ever, they are full-system techniques and rely on modified directory
protocols. Also, recording dependences between pairs of instruc-
tions can produce large logs and increase associated overhead. To
reduce this overhead, block-based techniques [7, 13, 23, 24, 30, 31,
35] have been proposed, but they are not designed for parallel re-
play and require changes to the coherence protocol. DeLorean [23]
and Capo [24] are block-based techniques that use speculative mul-
tithreading hardware to achieve replay parallelism.

Karma [3] is the first block-based R&R technique that explicitly
targets replay parallelism without relying on speculative hardware.
It is a whole-system (rather than application-level) R&R scheme
for directory protocols. It records bidirectional dependences be-
tween source and destination blocks and, hence, makes some mod-
ifications to the cache coherence messages. The design allows two
blocks to be tracked, an idea we build on in this paper. Karma al-
lows the blocks to grow beyond conflicts, similar to the Stitched
logs presented in this paper. The paper reports replay speeds within
19%-28% of vanilla runs (i.e., without R&R). The authors make,
however, several simplifying assumptions about the mechanisms
used for recording non-deterministic input events, and for handling
memory logs, which need care in a realistic, OS-aware implemen-
tation of R&R. It is also difficult to extrapolate their results to an
application-level scheme like Cyrus. It is also unclear how their re-
play mechanism can be extended to application-only replay, and to
cases where the recording and replaying machines have different
numbers of processors.

BugNet [25] records user processes by storing the result of load
instructions in a hardware-based dictionary. This is enough to han-
dle both input and memory-interleaving non-determinism and al-
lows each thread to be replayed independently. However, BugNet
still needs a solution to record inter-thread dependences, for which
it uses FDR [36]. Lee et al. [19, 21] augment this technique by
using offline symbolic analysis to reconstruct the inter-thread de-
pendences. This technique is mostly suitable for debugging, since
the analysis is, in general, a slow process.

8. Concluding Remarks
This paper presented Cyrus, the first hardware-based approach for
unintrusive, application-level R&R that explicitly targets high re-
play speed. It introduces the concept of an on-the-fly software back-
end pass during recording which, as the log is being generated,
transforms it. This backend pass fixes-up the log, which has in-
complete information due to our recording requirements of only
application-level interactions and no coherence protocol changes.

It also exposes the recorded parallelism and can flexibly trade-off
replay parallelism for log size. Cyrus had negligible recording over-
head. In addition, for 8-processor runs of SPLASH-2, it attained an
average replay parallelism of 5, and a replay speed that was, on av-
erage, only about 50% lower than the recording speed. The backend
pass was highly flexible and added negligible overhead.

While it is conceivable that a single-threaded backend can be-
come a bottleneck as the number of processors increases, we did
not find it to be so in our experiments (as evidenced by Figure 13).
Also, when such a backend becomes a bottleneck, we can paral-
lelize it and allocate more than one processor to it. This should only
be necessary for considerably large systems and workloads that ac-
tively use many processors and generate many blocks. It should be
emphasized that compute- and sharing-intensive applications such
as SPLASH2 programs represent the worst case for Cyrus. Less
demanding system workloads, such as databases and web servers,
that create smaller memory logs, are considerably easier to handle.

Although we motivated Cyrus using bus-based snoopy systems,
it can be easily adapted to other coherence schemes. Cyrus uses
source-only recording, which is crucial for parallel application-
level R&R. Moreover, it uses the number of bus transactions as
the time source. The same time source can be used in any coher-
ence scheme where all the processors see all of the requests in the
same order (e.g., address-broadcast tree of Sun’s Starfire [6] or the
ring-based design of Intel’s SandyBridge processors [38]). Alterna-
tively, in many modern CMPs, there are chip-level-consistent clock
sources that can be used as the time stamp (e.g., the uncore clock
that synchronizes the on-die interconnect of recent Intel systems).

For directory-based designs, where such time sources are not
available, the local time stamp of the requesting processor can be
piggybacked on the request message. Then, the sourcing proces-
sors can save this time stamp in their successor vectors — hence,
implementing source-only recording. This requires some changes
in the format of the coherence requests. Fortunately, compared to
bus-based designs, such changes are relatively easy to make in
directory-based systems.

Acknowledgements
This work was supported in part by NSF under grants CCF-
1012759, CNS-1116237, CNS-0834738, and CNS-0831212; Intel
under the Illinois-Intel Parallelism Center (I2PC) and the ISTC for
Secure Computing; and AFOSR MURI grant FA9550-09-01-0539.

References
[1] H. Agrawal et al. An Execution-Backtracking Approach to Debug-

ging. IEEE Software, 8(3), May 1991.
[2] G. Altekar and I. Stoica. ODR: Output-deterministic replay for mul-

ticore debugging. In Symposium on Operating Systems Principles,
2009.

[3] A. Basu et al. Karma: Scalable deterministic record-replay. In Int.
Conference on Supercomputing, 2011.

[4] B. Bloom. Space/Time Trade-Offs in Hash Coding with Allowable
Errors. Communications of the ACM, 11(7), July 1970.

[5] T. Bressoud and F. Schneider. Hypevisor-based fault-tolerance. ACM
Transactions on Computer Systems, 14(1), Feb 1996.

[6] A. Charlesworth. Starfire: Extending the SMP Envelope. IEEE Micro,
18(1), Jan. 1998.

[7] Y. Chen et al. LReplay: A pending period based deterministic replay
scheme. In Int. Symposium on Computer Architecture, 2010.

[8] J.-D. Choi and H. Srinivasan. Deterministic replay of Java mul-
tithreaded applications. In Symposium on Parallel and Distributed
Tools, 1998.

[9] B. Cully et al. Remus: High availability via asynchronous virtual
machine replication. In USENIX Symposium on Networked Systems
Design and Implementation, 2008.

[10] G. W. Dunlap et al. ReVirt: Enabling intrusion analysis through
virtual-machine logging and replay. In Symposium on Operating
Systems Design and Implementation, 2002.

[11] G. W. Dunlap et al. Execution replay of multiprocessor virtual ma-
chines. In Int. Conference on Virtual Execution Environments, 2008.

[12] A. Forin. Debugging of heterogeneous parallel systems. In Workshop
on Parallel and Distributed Debugging, 1988.

[13] D. R. Hower and M. D. Hill. Rerun: Exploiting Episodes for
Lightweight Memory Race Recording. In Int. Symposium on Com-
puter Architecture, 2008.

[14] S. T. King and P. M. Chen. Backtracking intrusions. In Symposium on
Operating Systems Principles, 2003.

[15] S. T. King et al. Debugging operating systems with time-traveling
virtual machines. In USENIX Annual Technical Conference, 2005.

[16] O. Laadan et al. Transparent, lightweight application execution replay
on commodity multiprocessor operating systems. In SIGMETRICS
Int. Conference on Measurement and Modeling of Computer Systems,
2010.

[17] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7), July 1978.

[18] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging Parallel Pro-
grams with Instant Replay. IEEE Trans. Comput., 36(4), Apr. 1987.

[19] D. Lee et al. Offline symbolic analysis for multi-processor execution
replay. In Int. Symposium on Microarchitecture, 2009.

[20] D. Lee et al. Respec: Efficient online multiprocessor replayvia spec-
ulation and external determinism. In Int. Conference on Architectural
Support for Programming Languages and Operating Systems, 2010.

[21] D. Lee et al. Offline symbolic analysis to infer Total Store Order. In
Int. Symposium on High Performance Computer Architecture, 2011.

[22] P. S. Magnusson et al. Simics: A Full System Simulation Platform.
IEEE Computer, 35(2), February 2002.

[23] P. Montesinos et al. DeLorean: Recording and Deterministically
Replaying Shared-Memory Multiprocessor Execution Efficiently. In
Int. Symposium on Computer Architecture, 2008.

[24] P. Montesinos et al. Capo: A software-hardware interface for practical
deterministic multiprocessor replay. In Int. Conference on Architec-
tural Support for Programming Languages and Operating Systems,
2009.

[25] S. Narayanasamy et al. BugNet: Continuously Recording Program
Execution for Deterministic Replay Debugging. In Int. Symposium on
Computer Architecture, 2005.

[26] S. Narayanasamy et al. Recording shared memory dependencies using
strata. In Int. Conference on Architectural Support for Programming
Languages and Operating Systems, 2006.

[27] D. Z. Pan and M. A. Linton. Supporting reverse execution for parallel
programs. In Workshop on Parallel and Distributed Debugging, 1988.

[28] S. Park et al. PRES: Probabilistic replay with execution sketching
on multiprocessors. In Symposium on Operating Systems Principles,
2009.

[29] H. Patil et al. PinPlay: A framework for deterministic replay and
reproducible analysis of parallel programs. In Int. Symposium on Code
Generation and Optimization, 2010.

[30] G. Pokam et al. Architecting a chunk-based memory race recorder in
modern CMPs. In Int. Symposium on Microarchitecture, 2009.

[31] G. Pokam et al. CoreRacer: A practical memory race recorder for mul-
ticore x86 TSO processors. In Int. Symposium on Microarchitecture,
2011.

[32] M. Russinovich and B. Cogswell. Replay for concurrent non-
deterministic shared-memory applications. In Programming Lan-
guage Design and Implementation, 1996.

[33] S. M. Srinivasan et al. Flashback: a lightweight extension for rollback
and deterministic replay for software debugging. In USENIX Annual
Technical Conference, 2004.

[34] K. Veeraraghavan et al. DoublePlay: Parallelizing sequential logging
and replay. In Int. Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2011.

[35] G. Voskuilen et al. Timetraveler: Exploiting acyclic races for optimiz-
ing memory race recording. In Int. Symposium on Computer Architec-
ture, 2010.

[36] M. Xu et al. A ”flight data recorder” for enabling full-system multi-
processor deterministic replay. In Int. Symposium on Computer Archi-
tecture, 2003.

[37] M. Xu et al. A regulated transitive reduction (RTR) for longer mem-
ory race recording. In Int. Conference on Architectural Support for
Programming Languages and Operating Systems, 2006.

[38] M. Yuffe et al. A fully integrated multi-CPU, GPU and memory
controller 32nm processor. In Int. Solid-State Circuits Conference,
2011.

