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Abstract

Current web browsers are complex, have enormous
trusted computing bases, and provide attackers with easy
access to modern computer systems. In this paper we in-
troduce the Illinois Browser Operating System (IBOS),
a new operating system and a new browser that re-
duces the trusted computing base for web browsers. In
our architecture we expose browser-level abstractions
at the lowest software layer, enabling us to remove al-
most all traditional OS components and services from
our trusted computing base by mapping browser abstrac-
tions to hardware abstractions directly. We show that this
architecture is flexible enough to enable new browser se-
curity policies, can still support traditional applications,
and adds little overhead to the overall browsing experi-
ence.

1 Introduction

Web-based applications (web apps), browsers, and op-
erating systems have become popular targets for attack-
ers of computer systems. Vulnerabilities in web apps
are widespread and increasing. For example, cross-site
scripting (XSS), which is effectively a form of script in-
jection into a web app, recently overtook the ubiquitous
buffer overflow as the most common security vulnerabil-
ity [50]. Vulnerabilities in web browsers are less com-
mon than web app vulnerabilities, but still occur often.
For example, in 2009 Internet Explorer, Chrome, Safari,
and Firefox had 349 new security vulnerabilities [4], and
attackers exploit browsers commonly [53, 37, 42, 41, 4].
Vulnerabilities in libraries, system services, and oper-
ating systems are less common than vulnerabilities in
browsers, but are still problematic for modern systems.
For example, glibc, GTK+, X, and Linux had 114 new
security vulnerabilities in 2009 [1], and in 2009 the most
commonly attacked vulnerability was a remote code ex-
ecution bug in the Windows kernel [4].

However, not all attacks on web apps, browsers, and
operating systems are equally virulent. At the top of the
computer stack, attacks on web apps, such as XSS, oper-
ate within current browser security policies that contain
the damage to the vulnerable web app. Moving down
the computer stack, attacks on browsers can cause more
damage because a successful attack gives the attacker ac-
cess to browser data for all web apps and access to other
resources on the system. At the lowest layers of the
computer stack, attacks on libraries, shared system ser-
vices, and operating systems are the most serious attacks
because attackers can access arbitrary states and events,
giving them complete control of the system.

Overall, these trends indicate that vulnerabilities
higher in the computer stack are more common, but vul-
nerabilities lower in the computer stack provide attack-
ers with more control and are more damaging. In this
paper we focus on preventing and containing attacks on
browsers, libraries, system services, and operating sys-
tems – the lower layers of the computer stack.

Current research efforts into more secure web
browsers help improve the security of browsers, but
remain susceptible to attacks on lower layers of the
computer stack. The OP web browser [26], Gazelle
[52], Chrome [11], and ChromeOS [25] propose new
browser architectures for separating the functionality
of the browser from security mechanisms and policies.
However, these more secure web browsers are all built
on top of commodity operating systems and include
complex user-mode libraries and shared system services
within their trusted computing base (TCB). Even kernel
designs with strong isolation between OS components
(e.g., microkernels [24, 27, 28] and information-flow ker-
nels [18, 57, 33]) still have OS services that are shared
by all applications, which attackers can compromise and
still cause damage. Here are a few ways that an attacker
can still cause damage to more secure web browsers built
on top of traditional OSes:
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• A compromised Ethernet driver can send sensitive
HTTP data (e.g., passwords or login cookies) to any
remote host or change the HTTP response data be-
fore routing it to the network stack.

• A compromised storage module can modify or steal
any browser related persistent data.

• A compromised network stack can tamper with any
network connection or send sensitive HTTP data to
an attacker.

• A compromised window manager can draw any
content on top of a web page to deploy visual at-
tacks, such as phishing.

In this paper we describe IBOS, an operating sys-
tem and a browser co-designed to reduce drastically the
TCB for web browsers and to simplify browser-based
systems. Our key insight is that our lowest-layer soft-
ware can expose browser-level abstractions, rather than
general-purpose OS abstractions, to provide vastly im-
proved security properties for the browser without affect-
ing the TCB for traditional applications. Some examples
of browser abstractions are cookies for persistent storage,
hypertext transfer protocol (HTTP) connections for net-
work I/O, and tabs for displaying web pages. To support
traditional applications, we build UNIX-like abstractions
on top of our browser abstractions.

IBOS improves on past approaches by removing typi-
cally shared OS components and system services from
our browser’s TCB, including device drivers, network
protocol implementations, the storage stack, and win-
dow management software. All of these components run
above a trusted reference monitor [9], which enforces our
security policies. These components operate on browser-
level abstractions, allowing us to map browser security
policies down to the lowest-level hardware directly and
to remove drivers and system services from our TCB.

This architecture is a stark contrast to current systems
where all applications layer application-specific abstrac-
tions on top of general-purpose OS abstractions, inherit-
ing the cruft needed to implement and access these gen-
eral OS abstractions. By exposing application-specific
abstractions at the OS layer, we can cut through complex
software layers for one particular application without af-
fecting traditional applications adversely, which still run
on top of general OS abstractions and still inherit cruft.
We choose to illustrate this principle using a web browser
because browsers are used widely and have been prone
to security failures recently. Our goal is to build a sys-
tem where a user can visit a trusted web site safely, even
one or more of the components on the system have been
compromised.

Our contributions are:

• IBOS is the first system to improve browser and OS
security by making browser-level abstractions first-
class OS abstractions, providing a clean separation
between browser functionality and browser security.

• We show that having low-layer software expose
browser abstractions enables us to remove almost
all traditional OS components from our TCB, in-
cluding device drivers and shared OS services, al-
lowing IBOS to withstand a wide range of attacks.

• We demonstrate that IBOS can still support tradi-
tional applications that interact with the browser and
shared OS services without compromising the secu-
rity of our system.

2 The IBOS architecture

This paper presents the design and implementation of
the IBOS operating system and browser that reduce the
TCB for browsing drastically. Our primary goals are to
enforce today’s browser security policies with a small
TCB, without restricting functionality, and without slow-
ing down performance. To withstand attacks, IBOS must
ensure any compromised component (1) cannot tamper
with data it should not have access to, (2) cannot leak
sensitive information to third parties, and (3) cannot ac-
cess components operating on behalf of different web
sites.

In this section we discuss the design principles that
guide our design and the overall system architecture. In
Section 4 we discuss the security policies and mecha-
nisms we use.

2.1 Design principles

We embrace microkernel [27], Exokernel [19], and
safety kernel design principles in our overall architec-
ture. By combining these principles with our insight
about exposing browser abstractions at the lowest soft-
ware layer we hope to converge on a more trustworthy
browser design. Five key principles guide our design:

1. Make security decisions at the lowest layer of soft-
ware. By pushing our security decisions to the low-
est layers we hope to avoid including the millions
of lines of library and OS code in our TCB.

2. Use controlled sharing between web apps and tra-
ditional apps. Sharing data between web apps and
traditional apps is a fundamental functionality of
today’s practical systems and should be supported.
However, this sharing should be facilitated through
a narrow interface to prevent misuse.
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Figure 1: Overall IBOS architecture. Our system con-
tains user-mode drivers, browsers API managers, web
page instances, and traditional processes. To manage the
interactions between these components, we use a refer-
ence monitor that runs within our IBOS kernel. Shaded
regions make up the TCB.

3. Maintain compatibility with current browser secu-
rity policies. Our primary goal is to improve the
enforcement of current browser policies without
changing current web-based applications.

4. Expose enough browser states and events to enable
new browser security policies. In addition to en-
forcing current browser policies, we would like our
architecture to adapt easily to future browser poli-
cies.

5. Avoid rule-based OS sandboxing for browser com-
ponents. Fundamentally, rule-based OS sandbox-
ing is about restricting unused or overly permis-
sive interfaces exposed by today’s operating sys-
tems. However, sandboxing systems can be com-
plex (the Ubuntu 10.04 SELinux reference policy
uses over 104K lines of policy code) and difficult to
implement correctly [23, 51]. If our architecture re-
quires OS sandboxing for browser components then
we should rethink the architecture.

2.2 Overall architecture

Figure 1 shows the overall IBOS architecture. The IBOS
architecture uses a basic microkernel approach with a
thin kernel for managing hardware and facilitating mes-
sage passing between processes. The system includes
user-mode device drivers for interacting directly with
hardware devices, such as network interface cards (NIC),
and browser API managers for accessing the drivers and

implementing browser abstractions. The key browser
abstractions that the browser API managers implement
are HTTP requests, cookies and local storage for stor-
ing persistent data, and tabs for displaying user-interface
(UI) content. Web apps use these abstractions directly
to implement browser functionality, and traditional ap-
plications (traditional apps) use a UNIX layer to access
UNIX-like abstractions on top of these browser abstrac-
tions.

2.2.1 The IBOS kernel

Our IBOS kernel is the software TCB for the browser and
includes resource management functionality and a refer-
ence monitor for security enforcement. The IBOS kernel
also handles many traditional OS tasks such as manag-
ing global resources, creating new processes, and man-
aging memory for applications. To facilitate message
passing, the IBOS kernel includes the L4Ka::Pistachio
[8] message passing implementation and MMU manage-
ment functions. All messages pass through our reference
monitor and are subjected to our overall system security
policy. Section 4 describes the policies that the IBOS
kernel enforces and the mechanisms it uses to implement
these policies.

2.2.2 Network, storage, and UI managers

The IBOS network subsystem handles HTTP requests
and socket calls for applications. To handle HTTP re-
quests, network processes check a local cache to see if
the request can be serviced via the cache, fetch any cook-
ies needed for the request, format the HTTP data into a
TCP stream, and transform that TCP stream into a series
of Ethernet frames that are sent to the NIC driver. Socket
network processes export a basic socket API and simply
transform TCP streams to Ethernet frames for transmis-
sion across the network. Only traditional apps can access
our socket network processes. The IBOS kernel manages
global states, like port allocation.

The IBOS storage manager maintains persistent stor-
age for key-value data pairs. The browser uses the stor-
age manager to store HTTP cookies and HTML5 local
storage objects, and the basic object store includes op-
tional parameters, such as Path and Max-Age, to ex-
pose cookie properties to the reference monitor. The
storage manager uses several different namespaces to
isolate objects from each other. Web apps and net-
work processes share a namespace based on the origin
(the <protocol, domain name, port> tuple of
a uniform resource locator) that they originate from,
and web apps and traditional apps share a “localhost”
namespace, which is separate from the HTTP names-
pace. All other drivers and managers have their own pri-
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vate namespaces to access persistent data.
The IBOS UI manager plays the role of the window

manager for the system. However, rather than implement
the browser UI components on top of the traditional win-
dow motif, we opted for a tabbed browser motif. Basic
browser UI widgets, called the browser chrome, are dis-
played at the top of the screen. IBOS displays web pages
in tabs and the user can have any number of tabs open for
web apps. There is a tab for basic browser configuration
and administration, and a tab that is shared by traditional
apps. If traditional apps wish to implement the window
motif, they can do so within the tab. The main advan-
tage of our browser-based motif is that it enables IBOS
to bypass the extra layers of indirection traditional win-
dow managers put between applications and the under-
lying graphics hardware, exposing browser UI elements
and events directly to the IBOS kernel. We discuss the
security implications of our design decision in more de-
tail in Section 4.8.

2.2.3 Web apps, traditional apps, and plugins

The IBOS system supports two different types of pro-
cesses: web page instances and traditional processes. A
web page instance is a process that is created for each in-
dividual web page a user visits. Each time the user clicks
on a link or types a uniform resource locator (URL) into
the address bar, the IBOS kernel creates a new web page
instance. Web page instances are responsible for issuing
HTTP requests, parsing HTML, executing JavaScript,
and rendering web content to a tab. Traditional processes
can execute arbitrary instructions, and the key difference
between a web page instance and a traditional processes
is that the IBOS kernel gives them different security la-
bels, which the kernel uses for access control decisions.
Web page instances are labeled with the origin of the
HTTP request used to initiate the new web page, and tra-
ditional processes are labeled as being from “localhost.”
These two processes interact via the storage subsystem
since both types of processes can access “localhost” data.

In general, plugins are external applications that
browsers use to render non-HTML content. One com-
mon example of a plugin is the Flash player that enables
browsers to play Flash content. In IBOS, plugins run as
traditional processes, except that they are launched by
the browser and the system gives them access to browser
states and events through a standard plugin programming
interface, called the NPAPI [2].

3 Current browser policies

In this section we give a brief introduction to the same-
origin policy (SOP) for browser security. For a more

complete discussion of this policy and others, plus exper-
imental results showing how current browsers implement
them, please see a recent paper by Singh, et al. [47].

The primary security policy that all modern browsers
implement is the SOP. The SOP acts as a non-
interference policy for the web. Loosely speaking, the
SOP provides isolation for web pages and states that
come from different origins – origins are used as labels
for browser access control policies. If the browser has a
web page open from uiuc.edu and from attacker.
com, the SOP should ensure that these two web pages are
isolated from each other. Unfortunately, Chrome, IE8,
Safari, and Firefox all enforce the SOP using a number
of checks scattered throughout the millions of lines of
browser code and current browsers have had trouble im-
plementing the SOP correctly [14].

In a browser, a frame is a container that encapsulates
a HTML document and any material included in that
HTML document. Web pages are frames, and web de-
velopers can embed additional frames within web pages
– these frames are called iframes. Developers can
include iframes from the same origin as the hosting
frame, or from a different origin. Each frame is labeled
with the origin of the main HTML document used to pop-
ulate the frame, meaning that a cross-origin iframe has
a different label than the hosting web page.

In general HTML documents include references to
network objects that the browser will download and dis-
play to form the web page. These network objects can
be images, JavaScript, and CSS. Browsers can download
these objects from any domain and the browser labels
them with the origin of the hosting frame. For exam-
ple, if a page from uiuc.edu includes a script from
foo.com, that script runs with full uiuc.edu per-
missions and can access any of the states in that web
page. Browsers can also download HTML documents
and XML HTTP requests (used for Ajax), but the SOP
dictates that these objects must come from the same ori-
gin as the hosting frame.

4 IBOS security policies and mechanisms

Our primary goal is to enforce browser security policies
from within our IBOS kernel. This section describes the
mechanisms that the IBOS kernel uses to enforce the
SOP. We also discuss policies and mechanisms for en-
forcing UI interactions, and we describe a custom policy
engine that lets web sites further restrict current policies.

4.1 Threat model and assumptions

Our primary goal is to ensure that the IBOS kernel up-
holds our security policies even if one or more of the sub-
systems have been compromised. In our threat model,
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Figure 2: This figure enlarges the right half of Figure 1
and shows how our IBOS subsystems interact when a
web page instance from uiuc.edu issues a network
request to foo.com. Subsystems are shown in boxes
and solid and dotted arrows represent IBOS messages for
outgoing and incoming data respectively. The reference
monitor (which is not shown here) checks all these mes-
sages to enforce security properties.

we assume that an attacker controls a web site and can
serve arbitrary data to our browser, or that the system
contains a malicious traditional app. We also assume that
this malicious data or traditional app can compromise
one or more of the components in our system. These
susceptible components include all drivers, browser API
managers, web page instances, and traditional processes.
Once the attacker takes control of these components, we
assume that he or she can execute arbitrary instructions
as a result of the attack. We focus on maintaining the in-
tegrity and confidentiality of the data in our browser. In
other words, we would like the user to be able to open a
web page on a trusted web server, and interact with this
web page securely, even if everything on the client sys-
tem outside of our TCB has been compromised. Avail-
ability is an important, but separate, aspect of browser
security that we do not address in this paper.

In our system we trust the layers upon which we built
IBOS. These layers include the IBOS kernel and the un-
derlying hardware. Like all other browsers, IBOS pred-
icates security decisions based on domain names, so we
trust domain name servers to map domain names to IP
addresses correctly. Compromising any of these trusted
layers compromises the security of IBOS.

4.2 IBOS work flow

This section describes a web page instance making a net-
work request to help illustrate the security mechanisms
that IBOS uses.

Figure 2 shows the flow of how a web page instance
fetches data from the network. The user visits a page
hosted at uiuc.edu and this web page includes an im-
age from foo.com. To download the image, (1) the web
page instance will make an HTTP request that the IBOS
kernel forwards to an appropriate network process. The
network process forms a HTTP request, which includes
setting up HTTP headers, (2) fetching cookies from the
storage subsystem, (3) requesting a free local TCP port
to transform this request into TCP/IP packets and Ether-
net frames, and (4) sending it to network manager. The
network manager notifies the Ethernet driver which (5)
programs the NIC to transmits the packet out to the net-
work. When the NIC receives a reply for the request, (6)
it notifies the Ethernet driver. The driver subsequently
(7) notifies the network manager, which (8) forwards the
packet to the appropriate network process. The network
process then parses the data and (9) passes the resulting
HTTP reply and data to the original web page instance.

4.3 IBOS labels

To enforce access control decisions, the IBOS kernel la-
bels web page instances, traditional processes, and net-
work processes. IBOS labels specify the resources that
a process can access or messages it can receive. Each
web page instance has one label, which is the origin of
the main HTML document. Each traditional process is
labeled as being from “localhost” when they are created.
Each network process has an origin label for the network
resources it handles and has an origin label for the web
page instances that are allowed to access it. IBOS la-
bels the processes upon creation, and keeps the labels
unchanged throughout the processes’ life-cycle.

An important point is that the IBOS kernel infers the
origin labels for web page instances and network pro-
cesses automatically by extracting related information
from the messages passed among them. By inferring la-
bels rather than relying on processes to label themselves,
the IBOS kernel ensures that it has the correct label in-
formation, even if a process is compromised.

The newUrl and fetchUrl IBOS system calls are the
two requests that cause the kernel to label processes. The
newUrl system call is used by web page instances and the
UI manager use to navigate the browser to a new URL.
The newUrl system call consists of two arguments: a
URL and a byte array for HTTP POST data. When the
IBOS kernel receives a newUrl request it will create a
new web page instance and set the label for this web page
instance by parsing the origin out of the URL argument
of the newUrl request. When servicing newUrl requests,
the IBOS kernel will reuse old web page instances (to
reduce process startup times), but only when the origin
labels match for the old web page instance and the URL
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argument.
Web page instances use the fetchUrl system call to is-

sue HTTP and HTTPS requests to fetch network objects,
such as images. The fetchUrl system call has two ar-
guments: a URL and HTTP header information. When
a web page instance issues a fetchUrl system call, the
IBOS kernel uses the origin of the web page instance
(set by the original newUrl call) and the origin of the
fetchUrl URL argument to find a network process with
these same labels, or creates a new network processes
and labels it accordingly if an existing network process
cannot be found.

More details about how we use these labels for access
control decisions are described in the remainder of this
section.

4.4 Security invariants

For all of our subsystems, we use security invariants that
are assertions on all interactions between subsystems that
check basic security properties. The key to our security
invariants is that we can extract security relevant infor-
mation from messages automatically, and provide high
assurance that the system maintains the security policy
without having to understand how each individual sub-
system is implemented. Using these security invariants,
we remove from the TCB almost all of the components
found in modern commodity operating systems, includ-
ing device drivers.

The ideal security invariant is complete, implementa-
tion agnostic, executes quickly, and requires only a small
amount of code in the IBOS kernel. A complete invariant
can infer all of the states needed to ensure the high-level
security policy, and an implementation agnostic invari-
ant can infer states without relying on the specific imple-
mentation of individual subsystems. The IBOS kernel
evaluates invariants in the kernel and inline with mes-
sages, so security invariants should execute quickly and
require little code to implement. In our design we strive
to make the appropriate trade offs among these proper-
ties to improve security without making the system slow
or increasing our TCB significantly. The base security
invariant we have is:

SI 0: All components can only perform their designated
functions.

For example, the UI subsystem can never ask for
cookie data or the storage manager cannot impersonate
a network process to send synthesized attack HTTP data
to a web page instance.

4.5 Driver invariants

The two driver invariants the IBOS kernel enforces are:

SI 1: Drivers cannot access DMA buffers directly.
SI 2: Devices can only access validated DMA buffers.

In our approach, we use a split driver architecture
where we separate the management of device control reg-
isters from the use of device buffers (SI 1). For example,
our Ethernet driver never has access to transmit or re-
ceive buffers directly. Instead, it knows the physical ad-
dresses where the IBOS kernel stores these buffers, and
it programs the NIC to use them. By separating these
two functions we can interpose on the communications
between them to ensure that IBOS upholds browser secu-
rity policies, even if an attacker completely compromises
a shared driver.

Using this split architecture, processes fill in device-
specific buffers for DMA transfers, and the IBOS ker-
nel infers when drivers initiate DMA transfers to ensure
that the driver instructs the device to use a verified DMA
buffer (SI 2). Fortunately, DMA buffers tend to use
well-defined interfaces, like Ethernet frames for Ether-
net drivers, so the IBOS kernel can readily glean security
relevant information from these DMA buffers before the
device accesses them. Unfortunately, the interface be-
tween drivers and devices is device-specific, so the IBOS
kernel must have a small state machine for each device
to properly infer DMA transfers. However, we found this
state machine to be quite small for the devices that we use
in IBOS.

In IBOS we implement a driver for the e1000 NIC, a
VESA BIOS Extensions driver for our video card, and
drivers for the mouse and keyboard.

4.6 Storage invariants

The primary invariant we strive to enforce in the storage
manager is:

SI 3: All of our key-value pairs maintain confidentiality
and integrity even if the storage stack itself becomes
compromised.

To enforce this invariant, our IBOS kernel encrypts
all objects before passing them to the storage subsystem.
To encrypt data, the IBOS kernel maintains separate en-
cryption keys for all of the namespaces on the IBOS sys-
tem. These namespaces include separate namespaces for
HTTP cookies based on the domain of the cookie, sep-
arate namespaces for web page instances based on the
origin of the page, separate namespaces for each of our
subsystems, and a separate namespace for all traditional
apps. When the IBOS kernel passes a request to the stor-
age manager it will append the security labels, a copy
of the key from the key-value pair, and a hash of the
contents to the payload before encrypting the data and
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passing it to the storage subsystem. When the IBOS ker-
nel retrieves this data, it can decrypt the data and check
the labels and integrity of the information. By using en-
cryption, the IBOS kernel does not need to implement
security invariants for any of our storage drivers, and our
storage subsystem is free to make data persistent using
any mechanisms it sees fit, such as the network (like in
our implementation) or via a disk-based storage system.

Our current implementation does not make any efforts
to avoid an attacker that deletes objects or replays old
storage data. For web applications this limitation has
only a small effect because the cookie standards do not
require browsers to keep cookies persistently and be-
cause web applications often limit the lifetime of cookies
using expiration dates, which are also part of the cookie
standard. However, if this limitation did become prob-
lematic, we could apply the principles learned from dis-
tributed or secure file systems to provide stronger guar-
antees.

4.7 Network process invariants

Our IBOS kernel maintains five main invariants for net-
work processes:

SI 4: The kernel must route network requests from web
page instances to the proper network process.

SI 5: The kernel must route Ethernet frames from the
NIC to the proper network processes.

SI 6: Ethernet frames from network processes to the
NIC must have an IP address and TCP port that
matches the origin of the network process.

SI 7: HTTP data from network processes to web page
instances must adhere to the SOP.

SI 8: Network processes for different web page in-
stances must remain isolated.

To help enforce these invariants, IBOS puts all net-
work processes in their own protection domains. If a web
page instance makes a HTTP request, the kernel will ex-
tract the origin from the request message and either route
this request to an existing network process that has the
same label, or it will create a new network process and
label the network process with the origin of the HTTP
request. Likewise, the kernel inspects incoming Ether-
net frames to extract the origin and TCP port informa-
tion, and routes these frames to the appropriately labeled
network process. By putting network processes in their
own protection domains, the kernel naturally ensures that
network requests from web page instances and Ethernet
frames from the NIC are routed to the correct network
process (SI 4) (SI 5).

To ensure that the NIC sends outgoing Ethernet frames
to the correct host, the IBOS kernel checks all outgoing
Ethernet frames before sending them to the NIC to check

the IP address and TCP port against the label of the send-
ing network process (SI 6). Also, the IBOS kernel checks
cookies before passing them to the network process to
ensure that all of the origin labels adhere to cookie stan-
dards. By performing these checks, the IBOS kernel en-
sures that the NIC sends outgoing network requests to
the proper host and that the request can only include data
that would be available to the server anyway.

To enforce the SOP, the IBOS kernel inspects HTTP
data before forwarding it to the appropriate web page
instance and drops any HTML documents from differ-
ent origins (SI 7). To inspect data, the kernel uses the
content sniffing algorithm from Chrome [10] to identify
HTML documents so the kernel can check to make sure
that the origin of HTML documents and the origin of the
web page instance match. This countermeasure prevents
compromised web page instances from peering into the
contents of a cross-origin HTML document, thus pre-
venting the compromised web page instance from read-
ing sensitive information included in the HTML docu-
ment.

To help isolate web page instances from each other,
we also label network processes with the origin of the
web page instance (SI 8). This second label is used only
for network access control decisions and does not affect
the cookie policy, which is predicated on the origin of
the network request. To access network processes, the
origin of the web page instance must match the origin of
this second label. By using this second label, the IBOS
kernel isolates network requests from different web page
instances to the same origin. As a result of this isolation,
a web page instance that is served a malicious network
resource (e.g., a malicious ad [41]) that compromises a
network process remains isolated from other web page
instances. If an attacker can compromise a network pro-
cess, IBOS limits the damage to the web page instance
that included the malicious content.

4.8 UI invariants

The three UI invariants that the IBOS kernel enforces are:

SI 9: The browser chrome and web page content dis-
plays are isolated.

SI 10: Only the current tab can access the screen,
mouse, and keyboard.

SI 11: The URL of the current tab is displayed to the
user.

The key mechanisms that our UI subsystem uses to
provide isolation are to use a frame buffer video driver
and page protections to isolate portions of the screen (SI
9). Our video driver uses a section of memory, called
a frame buffer, for writing to the screen. Processes
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Figure 3: IBOS display isolation. This figure shows how
IBOS divides the display into three main parts: a bar at
the top for the kernel, a bar for browser chrome, and the
rest for displaying web page content. The IBOS kernel
enforces this isolation using page protections and without
relying on a window manager.

write pixel values to this frame buffer and the graph-
ics card displays these pixels. Although our mechanism
makes heavy use of the software rastering available in Qt
Framework[3], our experiences and anecdotal evidence
from the Qt developers shows that software rastering can
perform roughly as fast as native X drivers running on
Linux [7]. The key advantage of our approach is that
the IBOS kernel can use standard page-protection mech-
anisms to isolate portions of the screen. Although our
current implementation does not support hardware accel-
eration, we believe that our techniques will work because
the IBOS kernel can interpose on standardized accelera-
tion hardware/software interfaces, such as OpenGL and
DirectX.

To provide screen isolation, we divide up the screen
into three horizontal portions (Figure 3). At the top, we
reserve a small bar that only the IBOS kernel can access.
We use the next section of the screen for the UI subsys-
tem to draw the browser chrome. Finally, we provide
the remainder of the screen to the web page instance. To
ensure that only one web page instance can write to the
screen at any given time, we only map the frame buffer
memory region into the currently active web page in-
stance and we only route mouse and keyboard events to
this currently active web page instance (SI 10).

To switch tabs, the UI subsystem notifies the IBOS
kernel about which tab is the current tab, and the IBOS
kernel updates the frame buffer page table entries ap-
propriately. However, a malicious UI manager could
switch tabs arbitrarily and cause the address bar and the
tab content to become out of sync (e.g., shows a page
from attacker.com, but claims the page comes from
uiuc.edu). One alternative we considered for this UI

inconsistency was interposing on mouse and keyboard
clicks to infer which tab the user clicked on, and also
performing optical character recognition on the address
bar to determine the address that the UI manager is dis-
playing. However, tracking this level of detail would re-
quire far too much implementation specific information
and would require the IBOS kernel to track additional
events like a user switching the order of tabs.

Our approach for the IBOS kernel is to use the kernel
display area to display the URL for the currently visi-
ble web page instance (SI 11). The kernel derives the
URL from the label of the currently visible web page
instance, providing high assurance that the URL the ker-
nel displays matches the URL of the visible web page
instance without tracking implementation specific states
and events in the UI manager. Although this security in-
variant appears simple, it is something that modern web
browsers have had trouble getting right [13].

4.9 Web page instances and iframes

The IBOS kernel creates a new web page instance each
time a user clicks on a link or types a new URL in the
address bar. To enforce the SOP on iframes, we run
cross-origin iframes in separate web page instances.
This separation allows us to fully track the SOP using
kernel visible entities. To facilitate communication be-
tween web page instances and the iframes that they
host, we marshal postMessage calls between the two.

Our current display isolation primitives are coarse
grained and we rely on the web page instance to manage
cross-origin iframe displays even though iframes
run in separate protection domains. However, current
display policies allow web page instances to draw over
cross-origin iframes that they host, so this design deci-
sion has no impact on current browser policies. One po-
tential shortcoming of this display management approach
is that compromised web page instances can read the dis-
play data for embedded iframes. Fortunately, many
sites with sensitive information, like facebook.com
and gmail.com, use frame busting techniques [34] to
prevent cross-origin sites from embedding them, which
the IBOS kernel can enforce.

4.10 Custom policies

Our main focus of this project is being able to enforce
current browser policies from the lowest layer of soft-
ware. However, we also want to create an architecture
that exposes enough browser states and events to en-
able novel browser security policies. Attacks such as
XSS operate within traditional browser policies and can
be difficult to prevent without relying on the HTML or
JavaScript engine implementations. Although our archi-
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tecture cannot prevent XSS, our goal is to prevent these
types of attacks from causing damage.

One mechanism we implement in IBOS is to give
a web server the ability to create its own more re-
strictive security policy to prevent attacks from sending
sensitive information to third-party hosts. In our cus-
tom policy, we allow web sites to specify a server-side
policy file that IBOS retrieves to restrict network ac-
cesses for a web page instance, similar to Tahoma man-
ifests [15]. For example, assume that a bank website
located at http://www.bank.com creates a policy
file at http://www.bank.com/.policy that spec-
ifies the online bank system can only access resources
from www.bank.com or data.bank.com. IBOS re-
trieves the policy file and automatically applies a more
restrictive policy for the online bank web application.
This restrictive policy prevents an attacker from sending
stolen information to a third-party host, providing an ad-
ditional layer of protection for the web application.

5 Implementation

The implementation of IBOS is divided into three parts:
the IBOS kernel, IBOS messaging passing interfaces,
and IBOS subsystems. The IBOS kernel is implemented
on top of the L4Ka::Pistachio microkernel and runs on
X86-64 uniprocessor and SMP platforms. We modi-
fied L4Ka to improve its support for SMP systems. The
IBOS kernel schedules processes based on a static prior-
ity scheduling algorithm.

The IBOS kernel provides three basic APIs (i.e.,
send(), recv(), and poll()) to facilitate message
passing. Applications use send() and recv() for
communication and call poll() to wait for new mes-
sages. The IBOS kernel intercepts all messages and au-
tomatically extracts the semantics from them, like cre-
ating a new web page instance or forwarding cookies to
network processes. Then the kernel inspects the seman-
tics to make sure they conform to all security invariants
and policies that we described in previous sections.

The IBOS subsystems implements APIs for web
browsers and traditional applications. They are built on
top of an IBOS-specific uClibc [6] C library, lwIP [17]
TCP/IP stack and the Qt Framework [3]. The web
browser also uses an IBOS-specific WebKit [5] to parse
and render web pages.

To support traditional apps, we use our uClibc and Qt
implementations to provide access to browser abstrac-
tions using the UNIX-like abstractions of the C runtime,
and GUI support from Qt. We use a few Qt sample pro-
grams for testing and we implement one plugin. Our plu-
gin is a PDF viewer that uses the Ghostscript PDF ren-
dering engine with bindings for Qt.

System LOC

IBOS 42,044

IBOS Kernel 8,905
L4Ka::Pistachio 33,139

Firefox on Linux > 5,684,639

Firefox 3.5 2,171,267
GTK+ 2.18 489,502
glibc 2.11 740,314
X.Org 7.5 653,276
Linux kernel 2.6.31 1,630,280

ChromeOS > 4,407,066

Chrome browser kernel 4.1.249 714,348
GTK+ 2.18 489,502
glibc 2.11 740,314
ChromeOS kernel & services (May 2010) 2,462,902

Table 1: Estimation of LOC of TCBs for IBOS, Firefox
on Linux, and ChromeOS. LOC counts are also shown
for some major components that are included in the TCB.

6 Evaluation

This section describes our evaluation of IBOS. In our
evaluation, we analyze the security of IBOS by measur-
ing the number of lines of code (LOC) in the IBOS TCB
and comparing it with other systems, and by looking at
recent bugs in comparable systems and counting vulner-
abilities that IBOS is susceptible to. We also revisit the
example attacks we discussed in the introduction, and we
measure the performance.

6.1 TCB

In IBOS, our goal is to minimize the TCB for web
browsers and to simplify browser-based systems. To
quantitatively evaluate our effort, we count the LOC in
the IBOS TCB and compare it against the TCB for Fire-
fox and ChromeOS. IBOS supports fewer hardware ar-
chitectures, platforms, device drivers and features, such
as browser extensions, than Firefox running on Linux
and ChromeOS. For a fair comparison, we only count
source code that is used for running above Linux and on
the X86-64 platform. Also, we omit all device drivers
from our counts except for the drivers we implement in
IBOS.

Table 1 shows the result of LOC counts in the TCB for
these three systems, measured by SLOCCount [54]. For
Firefox and ChromeOS, our counts are conservative be-
cause we only count the major components that make up
the TCB for each system – there are likely more compo-
nent that are also in the TCB for these systems. Because
the IBOS TCB has only around 42K LOC, it is possible
to formally verify or manually review the entire IBOS
TCB. And in fact, one L4 type microkernel has already
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Affected Component Num. Prevented

Linux kernel overall 21 20 (95%)
File system 12 12 (100%)
Network stack 5 5 (100%)
Other 4 3 (75%)

X Server 2 2 (100%)
GTK+ & glibc 5 5 (100%)
Overall 28 27 (96 %)

Table 2: OS and library vulnerabilities. This table shows
the number of vulnerabilities that IBOS prevents.

been formally verified [32].

6.2 OS and library vulnerabilities

To evaluate the security impact of IBOS’s reduced TCB,
we obtained a list of 74 vulnerabilities found in the Linux
kernel, X Server, GTK+, and glibc this year so far (as
of Sep. 18, 2010) [1] to see how the IBOS architecture
handles them. Out of the 74 vulnerabilities, 20 are re-
lated to unsupported hardware architectures and devices,
and 26 cause denial-of-service, which is out-of-scope for
this paper. For the remaining 28, we classify them based
on the subsystem the vulnerability lies in to determine if
IBOS is susceptible to these vulnerabilities.

Table 2 shows IBOS is able to prevent 27 of 28 vul-
nerabilities (96%). The only vulnerability we miss is
a memory corruption vulnerability in the e1000 Ether-
net driver. Normally IBOS is not susceptible to bugs in
device drivers, but this particular bug resulted from the
driver not accounting properly for Ethernet frames larger
than 1500 bytes, and this type of logic is what our NIC
verification state machine uses, so we counted this bug
against IBOS.

6.3 Browser vulnerabilities

To evaluate security improvements that IBOS makes
for browsers themselves, we compared how well
IBOS could contain or prevent vulnerabilities found in
Google’s Chrome browser. For this evaluation, we ob-
tained a list of 295 publicly visible bugs with the “se-
curity” label in Chrome’s bug tracker. Out of the 295
bugs, 42 cause denial-of-service such as a simple crash or
100% CPU utilization. IBOS does not address denial-of-
service or resource management currently. An additional
78 are either invalid, duplicate, not actually security is-
sues, or related to features that IBOS does not have, such
as browser extensions. For the remaining 175 bugs, we
examined each of them to the best of our knowledge and
classified them into the following seven categories and
compared how Chrome and IBOS handle those cases:

Memory exploitation: an attacker could use a memory
corruption bug to deploy a remote code execution attack.
For Chrome, if the bug is in its rendering engine, Chrome
contains the attack. However, bugs in the browser kernel
give attackers access to the entire browser. For IBOS,
bugs in either the rendering engine or other service com-
ponents are contained as they are all out of the TCB.

XSS: browsers rely on careful sanitization and correct
processing of different encodings to prevent XSS attacks.
For both Chrome and IBOS, it is infeasible to eliminate
XSS attacks, but they both contain the attacks in the af-
fected web apps.

SOP circumvention: Chrome runs contents in frames
from different origins in a single address space and uses
scattered “if” and “else” statements to enforce the same-
origin policy. This logic can be sometime subverted. In
IBOS, we run iframes in different web page instances to
provide strong isolation and check cross-origin access in
the IBOS kernel.

Sandbox bypassing: Chrome uses sandboxing tech-
niques, such as SELinux, to limit the rendering engine’s
authority. However, rule-based sandboxing is complex
and can be bypassed in some scenarios. In IBOS, we
designed browser abstractions to restrict the authority of
each subsystem, which are immune to this kind of prob-
lem naturally.

Interface spoofing: browsers are sometime vulnerable
to visual attacks in which a malicious website can use
complex HTTP redirection or even replicate the “look
and feel” of victim websites to deploy phishing. Chrome
uses a blacklist-based filter to warn users of malicious
websites. In IBOS, the IBOS kernel separates the dis-
play of different web page instances and uses the labels
of web page instances to display the correct URL in the
top of the screen to give the user a visual cue of which
website he or she is visiting.

UI design flaw: some security concerns arise because
of careless implementation, such as showing users’ pass-
words in plain text. Both Chrome and IBOS are vulnera-
ble to this type of problem.

Misc: some vulnerabilities could not easily be classi-
fied and mostly have low security severity. This is the
category for those remaining bugs.

In Table 3, we show the detailed results of the analysis
of the 175 vulnerabilities, broken down by the classifi-
cations above. We examined each of them to determine
whether Chrome contains the threats in the affected com-
ponents, and whether IBOS contains or eliminates the at-
tacks. The table shows IBOS successfully protects users
from 135 of the 175 vulnerabilities (77%).

The largest portion of bugs are browser implementa-
tion flaws that cause memory corruption and allow re-
mote code execution. Chrome does a fairly good job
containing most of them when they are in the rendering
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Chrome IBOS

Category Example Num. Contained Contained or eliminated

Memory exploitation A bug in layout engine leads to remote code execution 82 71 (86%) 79 (96%)
XSS XSS issue due to the lack of support for ISO-2022-KR 14 12 (87%) 14 (100%)
SOP circumvention XMLHttpRequest allows loading from another origin 21 0 (0%) 21 (100%)
Sandbox bypassing Sandbox bypassing due to directory traversal 12 0 (0%) 12 (100%)
Interface spoofing Two pages merge together in certain situation 6 0 (0%) 6 (100%)
UI design flaw Plain-text information leak due to autosuggest 17 0 (0%) 0 (0%)
Misc Geolocation events fire after document deletion 22 0 (0%) 3 (14%)
Overall 175 83 (46%) 135 (77%)

Table 3: Browser vulnerabilities. This table shows the number of Chrome vulnerabilities that Chrome itself contains
and IBOS contains or eliminates.

engine. However, Chrome is unable to contain exploits
in the browser kernel. A good example is a bug in the
HTTP chunked encoding module in the browser kernel,
which opens the possibility for a remote attacker to inject
code. In IBOS, the TCP/IP and HTTP stack is pushed out
of the TCB, and is replicated and isolated according to
browser security policies. Thus, IBOS is able to contain
this bug. The three memory corruption bugs IBOS could
not contain were from bugs in Chrome’s message pass-
ing system. Because the IBOS message passing logic
resides within our TCB, we counted these bugs as bugs
that IBOS would have missed.

6.4 Motivation revisited

In the introduction, we listed some examples of attacks
that an attacker can use to still cause damage to modern
secure web browsers by exploiting code in their TCB.
We revisit these examples again to argue that IBOS can
prevent them.

A compromised Ethernet driver cannot access the
DMA buffers used by the device. Even if an attacker
exploits the Ethernet driver, he or she still cannot tamper
with network packets because the driver does not have
access to DMA buffers and because the IBOS kernel val-
idates all transmit and receive buffers that the driver sets.

A compromised storage module has little impact on
data confidentiality and integrity. The IBOS kernel en-
crypts all data with secret keys that only the IBOS ker-
nel has access to. Stored objects are tagged with a hash
and origin information so that the IBOS kernel is able
to detect tampered data. The only thing a compromised
storage module can do is delete objects.

A compromised network stack is constrained as well.
In IBOS, every network process runs a complete net-
work stack. A compromised network process cannot
send users’ data to a third party host as the IBOS ker-
nel ensures it can only communicate with the expected
host. Network processes do have the ability to modify or
replay HTTP requests, but the web server might have a

mechanism to defend against replay attacks.
A Compromised window manager cannot affect other

subsystems in IBOS. In IBOS, the role of window man-
ager is simplified to only draw the browser chrome. It
can change some potentially sensitive information, such
web page titles. However, the IBOS kernel displays the
URL of the current tab in the kernel display area, provid-
ing users with some visual cues as to the provenance of
the displayed web content.

6.5 Performance

To evaluate the performance implication of IBOS’s ar-
chitecture, we compare its browsing experience to other
web browsers running in Linux. All experiments were
carried out on a 2.33GHz Intel Core 2 Quad CPU
Q8200 with 4GB of memory, a 320GB 7200RPM Sea-
gate ST3320613 SATA hard drive and an Intel PRO/1000
NIC connected to 1000 Mbps Ethernet. For Linux, we
used Ubuntu 9.10 with kernel version 2.6.31-16-generic
(x86-64).

We use page load latency to represent browsing ex-
perience. Page load latency is defined as the elapsed
time between initial URL request and the DOM onload
event. We compare IBOS with Firefox 3.5.9, Chrome
for Linux 4.1.249. We also ported most of the IBOS
browser components to Linux platform (noted as IBOS-
Linux) to focus on the performance impact of our IBOS
kernel architecture. In IBOS, we statically allocate pro-
cessors for subsystems as follows: the kernel and device
drivers run on CPU0, network processes run on CPU1,
web page instances run on CPU2, and all other compo-
nents run on CPU3. IBOS, IBOS-Linux, and Chrome all
use a same version of WebKit from February 2010 with
just-in-time JavaScript compilation and HTTP pipelining
enabled. For the WebKit-based browsers, we instrument
them to measure the time in between the initial URL re-
quest and the DOM onload event. For Firefox, we use
an extension that measures these same events. To reduce
noise introduced by our network connection, we load
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Figure 4: Page load latencies for IBOS and other web
browsers. All latencies are shown in milliseconds.

each web site using a fresh web page/browser instance
with an empty cache 15 times and report the average of
the five shortest page load latency times.

In Figure 4, we present the page load latency times
for six popular websites and show the standard devia-
tions with the error bars. Overall, Chrome has the short-
est page load latencies due to its effective optimization
techniques. For maps.google.com, IBOS, IBOS-
Linux, and Chrome out-perform Firefox, possibly due
to optimization in the WebKit engine for this particular
site. For www.bing.com, sfbay.craigslist.
org and cs.illinois.edu, IBOS, IBOS-Linux,
and Firefox show roughly the same results. IBOS has the
fastest loading time for craigslist. Craigslist
is a simple web site with few HTTP requests and with a
large number of HTML elements. We hypothesize that
the small performance improvement is due to the simpli-
fied IBOS software stack.

Both en.wikipedia.org/wiki/Main_Page
and www.facebook.com have more HTTP requests
than any of the other sites, and we observe slower page
load latencies for IBOS than for other browsers. For
these experiments IBOS performs slower than IBOS-
Linux. Because we use the IBOS components in Linux,
we believe that this performance difference occurs from
overhead in the IBOS kernel. To test this hypothesis, we
ran a number of micro benchmarks on the two systems
and we believe that the overhead is due to contention for
spinlocks in the L4 IPC implementation. The net effect
of this contention is that heavy use of network processes
requires heavy use of IPC, which adds latency to all IPC
messages and slows down the overall system. However,
the IBOS-Linux results for these experiments show that
this slow down is not fundamental and can be fixed with
a more mature kernel implementation.

Overall, the page load latency experiments show that
even with a prototype implementation of IBOS, our ar-

chitecture will not slow down the browsing speed signif-
icantly for the web sites we tested.

7 Additional related work

7.1 Alternative kernel architectures

Operating systems designed to reduce the trusted com-
puting base for applications are not new. For example,
several recent OSes propose using information flow to
allow applications to specify information flow policies
that are enforced by a thin kernel [18, 57, 33]; KeyKOS
[12], EROS [45], and seL4 [32] provide capability sup-
port using a small kernel; and Microkernels [24, 27, 28]
push typical OS components into user space. In IBOS,
we apply these principles to a new application – the web
browser – and include support for user interface com-
ponents and window manager operations. Also, these
previous approaches support general purpose security
mechanisms, like information flow and capabilities, and
shared resources and device drivers are part of the TCB.
The IBOS security policy is specific to web browsers,
and although this is less general, we can track this pol-
icy to hardware abstractions and can remove drivers and
other shared components from our TCB.

Both Exokernels [19, 31] and L4 [27] rethink low-
layer software abstractions. In both projects, they ad-
vocate exposing abstractions that are close to the under-
lying hardware to enable applications to customize for
improved performance. In IBOS we build on these pre-
vious works – in fact we use the L4Ka::Pistachio L4 [8]
MMU abstractions and message passing implementation
directly. However, the key difference between our work
and L4 and Exokernel is that we expose high-level ap-
plication abstractions at our lowest layer of software, not
low-level hardware abstractions. Our focus is on making
web browsers more secure and the system software we
use to accomplish this improved security.

7.2 Browser security

A number of recent papers have proposed new browser
architectures including SubOS [29, 30], safe web pro-
grams [44], OP [26], Chrome [11, 43], Gazelle [52], and
ServiceOS [38]. Although the browser portion of IBOS
does resemble some of these works, they all run on top of
commodity OSes and include complex libraries and win-
dow managers in their TCB, something that IBOS avoids
by focusing on the OS architecture of our system.

The webOS from Palm [40] and the upcoming
ChromeOS from Google [25] run a web browser on top
of a Linux kernel. ChromeOS includes kernel harden-
ing using trusted boot, mandatory access controls, and
sandboxing mechanisms for reducing the attack surface
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of their system. However, ChromeOS and IBOS have
fundamentally different design philosophies. ChromeOS
starts with a large and complex system and tries to re-
move and restrict the unused and unneeded portions of
the system. In contrast, IBOS starts with a clean slate
and only adds to our system functionality needed for
our browser. Although our approach does require im-
plementing from scratch low-level software and fitting
device drivers to a new driver model, the end result has 2
to 3 orders of magnitude fewer lines of code in the TCB,
while still retaining nearly all of the same functionality.

In the Tahoma browser [15], the authors propose using
virtual machine monitors (VMMs) to enable web appli-
cations to specify code that runs on the client. Tahoma
uses server-side manifests to specify the security pol-
icy for the downloaded code and the VMM enforces
this security policy. Tahoma does expose a few browser
abstractions from their VMM to help manage UI ele-
ments and network connections, but operates mostly on
hardware-level abstractions. Because Tahoma operates
on hardware-level abstractions, Tahoma is unable to pro-
vide full backwards-compatible web semantics from the
VMM and more fine-grained protection for browsers,
such as isolating iframes embedded in a web applica-
tion. Also, many modern VMMs use a full-blown com-
modity OS in a privileged virtual machine or host OS for
driver support, leaving tens of millions of lines of code
in the TCB potentially.

7.3 Device driver security

Device driver security has focused on three main topics.
First, several projects focus on restricting driver access to
I/O ports and device access to main memory via DMA.
For example, RVM uses a software-only approach to re-
strict DMA access of devices [55], SVA prevents the OS
from accessing driver registers via memory mapped I/O
through memory safety checks [16], and Mungi [35] re-
lies on using a hardware IOMMU to limit which mem-
ory regions are accessible from devices. Second, sys-
tem designers isolate drivers from the rest of the system.
This isolation can be achieved by running drivers in user-
mode, which has been a staple of Microkernel systems
[24, 36, 28], using software to protect the OS from ker-
nel drivers [20, 58], or by using page table protections
within the OS [49, 48]. The driver security architec-
ture in IBOS differs from these approaches because our
system provides fine-grained protection for individual re-
quests within a shared driver in addition to isolating the
driver from the rest of the system.

7.4 Secure window managers

A number of recent projects have looked at reducing the
TCB for window managers. For example DoPE [21] and
Nitpicker [22] move widget rendering from the server
to the client, leaving the server to only manage shared
buffers. CMW [56], EWS [46], and TrustGraph [39] also
use clients for rendering, but are able to apply capabili-
ties and mandatory access control policies to application
user-interface elements. In IBOS, we deprecate the gen-
eral window notion of modern computer systems in favor
of the simpler browser chrome and tab motif, allowing
us to track our security policies down to the underlying
graphics hardware on our system.

8 Conclusions

In this paper, we presented IBOS, an operating system
and web browser co-designed to reduce drastically the
trusted computing base for web browsers and to sim-
plify browsing systems. To achieve this improvement,
we built IBOS with browser abstractions as first-class OS
abstractions and removed traditional shared system com-
ponents and services from its TCB. With our new archi-
tecture, we showed that IBOS enforced traditional and
novel security policies, and we argued that the overall
system security and usability could withstand successful
attacks on device drivers, browser components, or tradi-
tional applications. Our experimental results showed that
IBOS added little overhead when compared to today’s
high-performance browsers running on fast and mature
commodity operating systems.
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