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Abstract

Current intrusion detection systems point out suspicious
states or events but do not show how the suspicious state
or events relate to other states or events in the system. We
show how to enrich an IDS alert with information about
how those alerts causally lead to or result from other
events in the system. By enriching IDS alerts with this
type of causal information, we can leverage existing IDS
alerts to learn more about the suspected attack. Back-
ward causal graphs can be used to find which host al-
lowed a multi-hop attack (such as a worm) to enter a local
network; forward causal graphs can be used to find the
other hosts that were affected by the multi-hop attack. We
demonstrate this use of causality on a local network by
tracking the Slapper worm, a manual attack that spreads
via several attack vectors, and an e-mail virus. Causal-
ity can also be used to correlate distinct network and host
IDS alerts. We demonstrate this use of causality by corre-
lating Snort and host IDS alerts to reduce false positives
on a testbed system connected to the Internet.

1. Introduction

Intrusion detection systems (IDSs) are used to alert
system administrators to possible attacks. IDSs moni-
tor events at various levels in a system and attempt to
alert administrators to events that match known attacks
(signature-based IDS) or do not match normal behavior
(anomaly-based IDS). Host-based IDSs monitor events
on a single host, such as system calls or file accesses.
Network-based IDSs monitor packets that are sent or re-
ceived.

One factor that limits the accuracy and usefulness of
IDS alerts is the lack of accompanying context. IDS alerts
point out suspicious events without relating them to other
events and state in the system. For example, Snort [1]

highlights suspicious messages but does not describe how
the receiving system reacted to these messages or what
caused the sending system to send the suspicious message.
Tripwire [6] alerts administrators to modified system files
but does not show what caused the modifications or how
the modified system files were used afterward. Additional
context may help an administrator see the connections be-
tween different alerts or find other hosts that have been
compromised.

This paper describes how to enrich an IDS alert with
causal information about the state or events detected by
the IDS. Informally, causal information shows which
events led to the state/event detected by the IDS and which
events were affected by the state/event detected by the
IDS. Formally, this causal information is defined by Lam-
port’s happens-before relationship [8], which results from
messages between hosts and interprocess communication
within a host. For example, a causal dependency is created
from process A to process B if process A forks process B,
if process A sends a message to process B, or if process
A writes a file that is later read by process B. By itera-
tively analyzing these causal dependencies, we compute
the transitive closure of causal relationships in the form
of a multi-host causality graph. A causality graph with
an IDS alert as a root node shows which events were af-
fected by the state/event that generated the alert. A causal-
ity graph with an IDS alert as a leaf node shows which
events led to the state/event that generated the alert.

Causality graphs can improve the effectiveness of IDS
alerts, as in the following scenarios:

� A worm exploits a vulnerability in a company’s pub-
lic web server, then starts infecting machines that are
behind the company firewall. An IDS on one of the
internal machines detects anomalous activity, but no
IDS alerts occur on the company’s public web server.
A causality graph can trace a worm from the ma-
chine that detected the intrusion back to the com-
pany’s public web server that allowed the worm into



the network. Figures 1–3 demonstrate this capabil-
ity for a testbed of machines infected by the Slapper
worm.

� An intruder logs in as a privileged user and sched-
ules a job (e.g., through the root’s crontab file) for
that night that will scan slowly for other vulnerable
hosts. While logging in as a privileged user and is-
suing a slow port scan are both suspicious, neither
is suspicious enough on its own to trigger an alert to
the administrator. A causality graph can show that
the login session that wrote the crontab file indirectly
led to the slow port scan. Figure 6 demonstrates how
a causality graph linked two IDS alerts during an at-
tack on one of our testbed computers.

The contributions of this paper are (1) to propose
causality graphs as a way to enrich IDS alerts; (2) to
show how to enhance the BackTracker system [7] to create
bi-directional, multi-host causality graphs; (3) to demon-
strate how causality graphs can help track the propagation
of multi-host attacks within an administrative domain; and
(4) to demonstrate how causality graphs can help correlate
otherwise disconnected IDS alerts.

The following is an overview of the paper. Section 2
describes how the original BackTracker system finds and
displays objects and events from a single host that causally
precede a given intrusion detection point, and Section 3
describes how we expand the scope of BackTracker to find
and display events from a network of hosts that causally
precede or causally follow a given intrusion detection
point. We call this extended system BDB, which stands
for Bi-directional, Distributed BackTracker. BDB repre-
sents a mechanism that administrators can use to enrich
IDS alerts; administrators can then use various policies on
top of this mechanism. Sections 4 and 5 describe several
scenarios that demonstrate how an administrator might
use the information provided by BDB to track multi-hop
attacks (worms, manual attacks, and e-mail viruses) and
correlate disconnected IDS alerts. Section 7 describes
some limitations of our approach, and Section 8 relates
our work to prior research.

2. BackTracker

We introduced the idea of using causality to analyze in-
trusions with the BackTracker system [7]. BackTracker
uses a modified Linux kernel to log system calls that form
dependencies between operating system objects. Back-
Tracker analyzes dependencies between three types of ob-
jects: processes, files, and filenames. For example, a
process � file dependency is formed when a process writes
a file, and a file � process dependency is formed when a
process reads a file. Files are identified by inode number

to allow BackTracker to track a file across rename oper-
ations and through symbolic links. A process � process
dependency is formed when one process creates another
process. Bi-directional dependencies are also possible,
such as when two processes share memory with each other
(process � process). See [7] for more details on the objects
and events analyzed by BackTracker.

BackTracker’s analysis starts from a suspicious object
or event detected by an IDS. BackTracker is independent
of which IDS is used, as long as the IDS can identify a
suspicious operating system event or object. BackTracker
analyzes the causal relationships formed between objects
to construct a graph of the objects and events that led to
the specified intrusion detection point. We call this a back-
ward graph because it looks back in time from a given IDS
alert. BackTracker then filters out the dominant sources of
noise in the backward graph according to default filtering
rules. For example, the login program reads and writes the
file /var/run/utmp, which makes it appear that each new lo-
gin session is affected directly by all prior login sessions.
BackTracker’s default rules seek to filter out events that
generate a lot of noise in the backward graph but enable
only a low degree of control between objects. New rules
can be added easily by an administrator, and we use this
to add 1-3 simple rules for each network service used in
this paper (web, FTP, SMB). For example, we filter out
reads and writes to the list of processes maintained by the
FTP server (/var/run/ftp.pids-all). See [7] for a fuller dis-
cussion of the use of filtering rules.

[7] showed that combining causal analysis and a set of
six simple rules was very effective. We analyzed multiple
attacks on a machine we had set up as a honeypot, and in
each case the resulting backward graph highlighted effec-
tively the source of the intrusion and the path between the
initial compromise and the intrusion detection point.

Figure 2 shows BackTracker’s output for a compromise
caused by the Slapper worm [2]. After an IDS detected
a suspicious process (update), BackTracker generated
the backward graph that led to this detection point. This
graph shows that the worm compromised the Apache web
server (httpd) and caused it to execute a bash shell. The
bash shell downloaded and unpacked a uuencoded tar file,
which contains the Slapper executable and the source code
for another program (update.c). The bash shell com-
piled this program, then ran the slapper process, which ran
the newly compiled update program.

3. Bi-directional, multi-host causality
The original BackTracker tool helps system adminis-

trators determine how an attack occurred by showing the
chain of events that led up to the point at which an intru-
sion was detected. In this section, we show how to gen-
eralize BackTracker’s use of causality in two ways: track-



ing causal effects forward as well as backward, and using
backward and forward causality across multiple hosts on a
network. We then describe new filtering rules to prioritize
the causal paths most likely to describe an intrusion as it
traverses across multiple hosts.

3.1. Forward tracking

BackTracker shows which events preceding an intru-
sion detection point could have contributed to the mod-
ified state or event that was detected. We would like to
generalize this approach to analyze in the forward direc-
tion. Analyzing causality in the forward direction answers
the question “What events and state were affected by the
intrusion detection point?”. Consider a scenario in which
an attacker replaces the /bin/ls executable with a pro-
gram that sends a user’s private files to a collection site.
Once an IDS detects that /bin/ls was modified, for-
ward tracking will show which files of which users were
leaked as a result; this could help limit the damage done
by the intrusion (e.g., by informing the user which credit
cards should be canceled).

Forward causal analysis is a straightforward extension
to backward analysis. Forward tracking uses the same
log of system calls and objects logged by BackTracker.
Whereas BackTracker adds events to a graph if they af-
fect an object before that object’s time threshold, forward
tracking adds events to a graph if they were affected by an
object after that object’s time threshold.

3.2. Multi-host causality

BackTracker’s analysis is limited to events that occurred
on the same host as the state or event that was detected
by the IDS. Because many attacks propagate via the net-
work, we would like to generalize this approach to track
intrusions as they infect multiple hosts. This will allow
us to leverage one host’s IDS alert to find other com-
promised hosts upstream (using backward causality) and
downstream (using forward causality). As with host-level
causality, this type of tracking is limited to machines un-
der our administrative control.

To track causality across multiple hosts, we extend
BackTracker’s logging to also track network sends and re-
ceives. If process 1 on machine A sends a packet to pro-
cess 2 on machine B, this forms an inter-host causal de-
pendency from process 1 to process 2. Connecting a send
event with its corresponding receive event requires identi-
fying each packet (or connection). There are several ways
to identify packets. The simplest is to use information in
existing network headers, such as the source and desti-
nation IP address, port number, and sequence number (for
TCP messages)1. Another approach is to supplement mes-

1The gateway that receives messages from outside the network can

sages with additional information [10], either at network
routers or using our modified kernel. Finally, one could
identify packets by storing a hash of their contents. We
currently identify packets by their source and destination
addresses and sequence number; this simple approach is
sufficient for the TCP-based attacks evaluated in this pa-
per.

3.3. Prioritizing packets

Tracking the causal relationships caused by network
communication can lead to extremely large graphs. Con-
sider the following scenario: an intruder attains a login
session on an internal computer (A). He then uses that lo-
gin session to compromise an internal SMB server (B).
From the SMB server, he browses the departmental web
server, then launches a worm. Using one of the outgo-
ing worm messages as a starting point, an administrator
can generate a multi-host, backward causality graph. This
graph will include the key link in the attack, which is the
message from the login session (A) to the SMB server (B).
However, the graph will also include the irrelevant mes-
sages from the departmental web server. To make mat-
ters worse, the graph may also include other clients that
happened to affect the execution of the departmental web
server before that server sent pages to the SMB server.

Another example scenario is if a network service han-
dles a series of requests in a single process. If this net-
work service is compromised, it will causally depend on
all prior incoming requests. Fortunately, network services
are often built to create a new process to handle each (or a
few) incoming requests. Creating a new process helps to
limit the set of incoming packets that causally precede an
intrusion.

In order to counteract the tendency of graphs to explode
in size, we must prioritize which packets to include in
multi-host causality graphs. This is analogous to filter-
ing host events that are less likely to be critical steps in an
intrusion. Prioritizing packets leads to the same tradeoffs
inherent to any kind of filtering. Even objects or events
that are unlikely to be important in understanding an in-
trusion may nevertheless be relevant, and filtering these
out may accidentally hide important sequences of events.

There are numerous methods one could use to prioritize
which packets to follow in backward or forward causal
analysis. The first method is a simple heuristic that works
well for today’s simple worms. A common pattern of to-
day’s worms is to connect to a network service, compro-
mise it (e.g., with a buffer overflow), then immediately
start a root shell or a backdoor process. For this pat-
tern, the best process to follow when performing back-
ward causality process is the highest (i.e., earliest) pro-

use ingress filtering to check that these messages do not spoof an internal
network address [5]



cess in the backward graph that received a network packet.
The best packet to follow for this pattern is the most re-
cent packet received by the highest process. We call this
heuristic highest process, most recent packet.

A more general and robust method for prioritizing pack-
ets is to choose packets that are related causally to another
IDS alert. For example, an administrator may use forward
tracking from a host that has detected a backdoor process.
The forward causal graph from this process will show all
hosts that received a message from the backdoor process,
as well as the subsequent actions on those hosts that were
caused (directly or indirectly) by receiving that message.
Some of these messages are likely innocent or ineffective,
while others may be malicious and effective. Messages
that are malicious and effective are more likely to lead
causally to other IDS alerts and should therefore be pri-
oritized. These other IDS alerts may be from a network
anomaly detector that points out suspicious messages di-
rectly, or they may be from a host IDS that detects suspi-
cious host activity that results indirectly from these mes-
sages.

Another method of prioritizing packets leverages the
fact that most worms repeat their actions as they traverse
hosts. They usually propagate from host to host using the
same exploit, or perhaps using one of a few exploits. They
may also perform the same activities on each host they
compromise, such as installing backdoors, patching vul-
nerabilities, or scanning for private information. These re-
peated actions form a pattern that characterizes the worm.
As we causally follow an intrusion alert from host to host
(forward or backward), we can learn this pattern and use
it to prioritize packets that cause similar patterns on other
hosts.

A pattern for a worm may be characterized in many
ways. It could be the set of files or processes that causally
follow from a received packet. More generally, one could
characterize a worm by the topology of the causal graph
resulting from the received packet. In fact, one can view
the topology or membership of a packet’s forward causal-
ity graph as a signature of a worm and raise an IDS alert
whenever one sees this signature. Similarly, one can view
the topology or membership of a network service’s causal-
ity graph as a profile of that network service and raise an
alarm whenever one sees an anomalous causality graph.

Finally, in some cases one can take advantage of
application-specific knowledge to identify more precisely
which incoming packet causes a given action. For exam-
ple, a mail client may be able to inform the causality track-
ing system which downloaded mail message contained the
attachment that is being viewed. If the viewer is compro-
mised while viewing that attachment, the causality tracker
can focus on the appropriate message.

Host A

Host B

Host C

Host D

Local
Network

External
Network

(3)

(1)

(2)

Figure 1. Inter-host propagation of the Slap-
per worm. The worm first infects Host A,
then launches attacks against Hosts B, C,
and D. After an IDS detects the attack on
Host D, BDB tracks the attack backward to
Host A, then tracks it forward to Hosts B and
C. The solid lines depict the attacks, and the
dotted lines depict the order of BDB’s anal-
ysis.

4. Tracking multi-hop attacks
The prior sections introduced the mechanisms used by

BDB to connect multiple alarms together. In the next two
sections, we discuss and demonstrate several ways to use
these mechanisms. In this section, we track attacks that
traverse several hosts within an administrative domain.

4.1. Overview

Many organizations place most of their computers and
services on an intranet behind a firewall, with only a few
computers and services exposed to the public Internet. Re-
lying too heavily on this type of perimeter defense has
well-known flaws: if an attacker breaches the firewall
(such as through an infected laptop, email virus, or bug
in one of the public network services), he gains access to
the computers on the local network, which are often less
secured. To clean up after such a breach, the administrator
must first find all the computers that have been compro-
mised. It can be quite difficult to find which computers
have been compromised during an attack, because the at-
tacker may break into a system, steal or corrupt data, then
clean up by removing telltale signs of his attack.

In this section, we show how BDB can track attacks
that traverse multiple hosts, even when the intrusion is de-
tected initially on only a single host. After an intrusion
is detected on a single host, BDB tracks backward to de-
termine what led to the intrusion on that host. Tracking



back continues across nodes until it reaches the point at
which the attack entered the intranet. Finding the point
the attack entered the intranet is useful in securing the net-
work against future attacks. If the attack entered via an in-
fected laptop, the administrator can chastise and educate
the user; if the attack entered via a buggy network service,
the administrator can disable that service or apply a patch
[13]. After backward tracking is complete, BDB performs
forward tracking to find other compromised hosts. As
BDB finds compromised hosts during backward and for-
ward tracking, it provides the opportunity to learn about
the attack. The information it learns can be used to de-
velop network and host signatures of the attack that can be
used to avoid future compromises or scan other networks
for compromised hosts.

As discussed in Section 3.3, prioritizing which packets
to follow can be done in a variety of ways. In Section 4.2,
we track the Slapper worm backward using the highest
process, most recent packet heuristic. During the forward
tracking phase, we prioritize which packets to follow by
leveraging the signatures learned about the worm while
tracking it backward. In Section 4.3, we prioritize the
packets by following those flagged as suspicious by the
Snort network IDS. In Section 4.4, we use application-
specific instrumentation to identify which e-mail message
led to later events on the host.

4.2. Slapper worm

We first demonstrate the ability of BDB to track attacks
across multiple hosts by releasing a modified version of
the Slapper worm on a local worm testbed (Figure 1).
We modified the spreading pattern of Slapper to look for
new victims on the local network before using its default
method of searching for vulnerable machines among ran-
domly generated IP addresses.

Our testbed contains four vulnerable web servers: one
accessible from both the public Internet and the local net-
work, and three accessible only from the local network.
To make it harder to track the worm, we add background
noise by running the SPECweb99 benchmark between the
web servers. Two machines acted as SPECweb99 servers,
and the other two machines acted as SPECweb99 clients.
This workload generated 95,943 operating system objects
and 1,628,937 events spread out over the four machines.
The test was run for 20 minutes, with the worm being re-
leased 10 minutes after the test began.

The initial detection point occurred on Host D when
an IDS detected a suspicious process named update;
Figure 2 shows the causality graph on Host D that led
to this process. The update process is used by Slap-
per to spread the worm to other machines. This process
on Host D is the starting point of our backward traversal.
The causality graph shows that update is compiled from

source code, which is downloaded by a shell over a socket.
The shell is started by a compromised web server.

Using the highest process, most recent packet heuris-
tic, BDB identifies a packet received by the web server
process as likely to be part of the attack. That packet
originated from Host A and is the starting point for back-
ward tracking on that host. Tracking the packet on Host
A results in sequence of events similar to those found on
Host D. However, the highest process, most recent packet
heuristic identifies a packet that originated from an exter-
nal source, so BDB’s traversal backward stops.

While tracking the worm backward from Host D to Host
B, BDB collects information about the worm in the form
of a backward causality graph. These graphs are signa-
tures that describe how the worm behaves on a computer.
BDB uses this information to go forward and detect other
instances of the worm.

The forward traversal begins with the httpd process
on Host A since that is the starting point of the worm (Fig-
ure 3). BDB initially considers all activity resulting from
this point. In addition to communicating with Host D,
the worm also contacts Hosts B and C. BDB uses forward
tracking to examine the effects of each outgoing packet
on the receiving hosts. To determine if the worm had in-
fected these machines, BDB searches the forward graphs
for the causality signatures found while traversing back-
ward. In both cases, the signature is found, and the hosts
are deemed exploited.

BDB tracks the Slapper worm effectively using the
highest process, most recent packet heuristic and match-
ing host worm signatures found during the backward
traversal phase. Despite the heavy load on the network
service that was exploited, BDB filtered out irrelevant
events and highlighted only the actions of the worm. The
backward and forward graphs of all of the infected nodes
contain a total of 171 objects and 251 events, which is 2-
3 orders of magnitude less than the total activity on the
system.

4.3 Multi-vector manual attack

Although the highest process, most recent packet
heuristic is effective for the Slapper worm and many other
existing exploits we examined, an attacker that knows
about this heuristic could evade detection. For example,
an attacker could implicate an innocent request by receiv-
ing it between the initial exploit and the next phase of the
attack. Another difficult scenario occurs when there are
multiple network services at different roots of the back-
ward graph; in this case, there is no unique highest pro-
cess.

One way to address these shortcomings is to use a net-
work IDS to prioritize which packets to follow. While a
network IDS may not be accurate enough to track attacks
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Figure 3. Forward causality graph of Host A
for the Slapper attack. The subgraph formed
by executing uudecode, tar, and gcc is rep-
resented by the box with double lines.

by itself, it may be accurate enough to prioritize which
packets BDB should follow. In this paper, we use the net-
work IDS Snort [1] to prioritize packets for BDB. Snort
matches messages against a number of known signatures;
for this test, we use rules that find commonly used shell-
code instructions. For example, Snort detects consecutive
no-op instructions, which are used often in buffer over-
flow attacks to compensate for variations in process ad-
dress spaces. Although this type of network anomaly de-
tector is prone to false positives, it is effective enough to
prioritize which causally-related network packets to ex-
amine first.

To evaluate whether a network IDS can prioritize pack-
ets effectively, we carried out an attack on our local
network that exploits several network services on vari-
ous nodes within our system (Figure 4). We simulate
a stealthy attacker by compromising one host at a time,
rather than scanning the network and attacking all vulner-
able hosts. We start by breaking into a publicly accessible
web server. From there, we compromise succeeding hosts
through vulnerabilities in the ftp and samba servers. Each
attack results in an interactive shell, and we use that shell
to download tools and break into the next host.

Our testbed includes 12 hosts: four web servers, four
ftp servers, and four samba servers. Each of the nodes
also doubles as a client. To make it harder to track the
attack, we add background noise through artificial users
who are logged into each computer. Each user mounts
all four samba servers in his file space. The users down-

Host A

web server web server web server web server

ftp server ftp server ftp server ftp server

samba serversamba serversamba serversamba server

Host B Host C Host D

Host E Host F Host G Host H

Host I Host J Host K Host L

External
Network Network

Local

(3)(2)

(1) (4)
(5)

(6)

Figure 4. Inter-host propagation of the multi-
vector attack. We carried out an attack on
five of the 16 testbed hosts (A, E, I, G, K)
using multiple attack vectors (solid lines).
After an IDS detects the attack on Host I,
BDB tracks the attack backward to Host E
and A, then tracks it forward to Hosts E, I, G,
and K.

load source code from a randomly selected web or ftp
server, then unpack this source code to a randomly se-
lected samba mounted directory and compile it. The entire
process is repeated for the duration of the test. These ac-
tivities result in large amounts of noise; across all twelve
nodes there are over 2 GB of network traffic, 6,589,526
operating system events and 814,262 operating system ob-
jects. The test was run for 20 minutes, and the intrusions
occurred 10 minutes after the test started.

The attack is detected initially on Host I, when the
attacker launches a backdoor process that opens a raw
socket. BDB generates a backward graph using the
backdoor process as the detection point, then sees
which of the causally related incoming packets were
flagged as suspicious by Snort. In this case, one of the
incoming packets in the backward graph had been flagged
as suspicious by Snort. The suspicious packet came from
the ftp server on Host E. Using the suspicious packet as
the starting point for another BackTracker iteration, BDB
again found that one of the causally related packets on
Host E’s backward graph had been flagged as suspicious
by Snort. This packet led us back to the public web server
on Host A. All causally related incoming packets on Host
A are from external connections, so the backward traver-
sal ends here.

Starting from the external web server, BDB uses Snort
to prioritize among the causally related outgoing packets,
with the goal of finding other compromised hosts. The
forward analysis led us back to Host E and then again to
Host I. From Host I, BDB found that the attacker broke
into Host G and then Host K.



In the end, BDB found all of the infected hosts and
highlighted 420 operating system objects and 19 network
packets of the 814,262 objects and 2 GB of network data
on the entire system. BDB’s resulting causal graph is
small enough that an administrator who wants to under-
stand the attack in more detail can examine each object
and packet by hand.

Although BDB found all compromised hosts, there
were some false positives in our analysis. In particular,
Snort flagged as high priority seven packets that unsuc-
cessfully attempted to use the samba exploit. These did
not affect our analysis because none of the unsuccessful
break-in attempts generated any extraneous network ac-
tivity, and all of the attacked hosts were eventually broken
into. To reduce these false positives, BDB could prioritize
network packets further by using additional IDSs; for in-
stance, it could see which suspicious network packets led
to other host IDS alerts on the receiving host.

4.4. E-mail virus

Attacks often propagate through a network via e-mail
viruses. E-mail viruses typically spread by fooling a user
into running a suspicious application or by exploiting a
helper process used to handle an attachment. Unfortu-
nately, the structure of e-mail handling programs makes
it difficult for BDB to track the causal relationship be-
tween incoming messages and subsequent actions. E-mail
servers that receive messages and e-mail clients that dis-
play them for users tend to be long-lived and to read mul-
tiple messages at a time. Because BDB tracks causality
at the granularity of a process, it assumes conservatively
that all messages that have been read affect all subsequent
actions. Tracking causality at a more precise granularity
requires program-specific instrumentation, and this sec-
tion demonstrates how one can enhance BDB in this way
to track e-mail viruses.

We made two application-specific changes to support
e-mail tracking across multiple hosts. First, we modified
the exim e-mail server to link the network messages it re-
ceives with e-mail messages IDs. Second, we modified the
pine e-mail client to inform BDB of the “current” e-mail
message ID being read at a given time. We assume that
the saving of an attachment or launching of a helper pro-
cess is caused by the current e-mail message being read
by the user. These changes allow us to track (backward or
forward) the effects of an e-mail message as it is received
by the server, transferred to the client, and viewed by a
user. Resulting actions on a host, such as writing files,
starting new processes, and sending messages, are tracked
via BDB’s normal mechanisms.

We tested the ability of BDB to track an e-mail virus
by installing our instrumented e-mail server and client on
our testbed, then releasing a virus. Figure 5 shows how

BDB’s resulting causality graph is able to track the virus
backward from the initial detection on Host A (Figure 5a),
back to when the virus was received by the exim server
(Figure 5b), back to the upstream Host B (Figure 5c).

5. Correlating multiple alerts within and
across nodes

In this section, we discuss the benefits of correlating
multiple IDS alerts using causality, and we show how cor-
relating alerts with causality can reduce false positives on
a testbed system.

5.1. Overview

A major problem with many IDSs is false positives.
One approach to reduce these false positives is to com-
bine multiple host or networks IDS alerts into a single,
higher-confidence alert. Prior approaches connect distinct
alerts through statistical correlation on various features of
the alert, such as the destination IP address or time of the
alert. BDB makes it possible to correlate alerts in a new
way by revealing which alerts are related causally.

The main benefit of relating alerts causally is its po-
tential for increased accuracy—statistical correlation may
suffer from coincidental events, whereas causal relation-
ships are determined by chains of specific OS and network
events.

In addition, using causality to correlate alerts can reduce
dramatically the amount of data each IDS needs to pro-
cess. For example, in Section 4.3, we showed how BDB
revealed which outgoing network packets were causally
related to a host IDS alert. BDB can thus narrow the
search for suspicious network activity to a handful of
packets, even in the midst of a busy network. In the same
way, BDB can reduce the amount of data that a host IDS
must examine. For example, a host IDS need examine
only those processes and files that are related causally to
packets that are flagged as suspicious by a network IDS.
This allows one to use intensive host IDSs that would oth-
erwise be too slow [12].

Two IDS alerts may be related causally in a variety of
ways. One alert may causally precede or follow the other.
Or, two alerts may share a common ancestor, such as when
a single shell process executes two child processes that
each perform a suspicious action. It is up to higher-level
policies to determine how to score these different causal
relationships, and we leave this to future work. We specu-
late that alerts are more likely to be correlated if one is the
direct descendant of the other than if they simply share a
common ancestor.
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Figure 5. BackTracking an e-mail virus. In (a), BDB uses its normal tracking plus an instrumented
e-mail client to track back from an outgoing network connection to the causally related incoming
e-mail message. In (b), BDB uses the instrumented e-mail server to link the suspicious e-mail
message with the incoming network message that delivered that e-mail message. This procedure
identifies the host that sent the e-mail virus, where the backtracking can be repeated.

5.2. Results

To test how effectively causality can be used to corre-
late alerts, we ran BDB on two test systems that were ex-
posed to the Internet. One system was running the de-
fault RedHat 6.2 installation; the other was running the
default RedHat 7.0 installation. Both systems had several
vulnerable servers that were accessible from the Internet,
including the bind, ftp, and web servers. We configured
the system to use a network IDS and a host IDS. We used
Snort with its default rules as a network IDS, and we used
a host IDS that flagged as suspicious any process that runs
as root. While both IDSs are expected to generate many
false positives, correlating alerts from these two IDSs us-
ing causality can increase our confidence that alerts result
from actual compromises. To correlate alerts, we started
with Snort alerts and generated causal graphs on the host
for each suspicious network message. We then reported
any processes in the resulting causal graphs that ran as
root.

We ran the system for two days. 2 During this period,
Snort generated 39 alerts, and the host IDS detected nu-
merous root processes. Of these alerts, BDB detected
two that were connected causally: an outgoing message
flagged by Snort and two root processes. Figure 6 shows
that the alerts were connected causally through a common

2We also used BDB on one of our desktop computers to correlate
Snort and host IDS alerts. Although we were not attacked successfully
over this period, BDB was effective at filtering out the numerous false
positives generated by Snort.

ancestor (the httpd process), We confirmed by hand that
these two alerts were indeed the result of a successful at-
tack. Snort’s alert resulted from a suspicious outgoing
packet (triggering the “uid=” rule that indicates the out-
put of the id command) that was sent by a shell process
executed by a compromised web server. The shell pro-
cess also downloaded various tools and gained root access
through a local modutils exploit, which triggered the
host IDS alert.

We examined the other Snort alerts by hand to see if
there were any other true positives. We found one other
true positive, in which the attacker compromised the web
server but did not gain root privilege. This illustrates the
tradeoffs involved in correlating IDS alerts. Reporting
only correlating alerts reduces the number of false posi-
tives, but it may mask some true positives as well. Corre-
lating Snort alerts with a more sophisticated host IDS may
have reported both true positives.

Overall, BDB effectively reduced the number of false
positives on our testbed. It also reduced administrative
overhead by allowing us to use Snort’s default rules, rather
than customizing the set of rules by hand to reduce false
positives.

6. Prototype implementation and perfor-
mance

BDB is a working prototype implemented for the Linux
operating system. Causal tracking is implemented as two
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Figure 6. Correlating alerts. This figure shows how a causal graph can connect two distinct IDS
alerts. The two alerts are shown as shaded boxes. One alert is generated by Snort, and the other
is generated by a host IDS that detects root processes. The bold lines highlight the events that
most directly relate the flagged IDS alerts.

separate modules: one for logging the specific causal
events and another for generating forward and backward
graphs. The logging requires modifications to the Linux
operating system; the resulting logs can be written to a
local file or streamed out over the network. The graph
generator then parses the logs to create the graphs. BDB
stores logs in a MySQL database; this allows it to generate
graphs quickly even for large logs. For example, generat-
ing a graph from a log containing 2,187,963 objects and
55,894,869 events takes about 26 seconds. The time to
generate graphs is proportional to the number of objects
in the final causal graph rather than the total number of
objects in the log. As a result, the multi-hop example dis-
cussed in Section 4.3 took less than 45 seconds to perform
the complete analysis over all 12 nodes.

7. Limitations
As with most security enhancements, using causal

tracking to enrich IDS alerts has its limits. First, BDB
can track events only on hosts that are using its kernel
modifications. Both backward and forward tracking stop
when they reach a host that is not running BDB. For max-

imum effectiveness, an administrator should run BDB on
all hosts in her administrative domain.

Second, BDB tracks only a subset of the many events
that form dependencies, and events outside this set lead
to covert channels. For example, BDB ignores the de-
pendency that is formed if one process creates a file in a
directory and another process lists the contents of that di-
rectory. [7] describes why it is difficult for an attacker to
use these types of covert channels to carry out an attack
without being tracked by BDB, but it is still possible. An
attacker may also create a covert channel by leveraging an
unmonitored host. BDB cannot track causality on hosts
that lack instrumentation, and an attacker can break the
causal chain by traversing such a host.

Another style of attack against BDB is to deliberately
create noise in the causal graphs, either by generating a
large number of events, or by implicating innocent pro-
cesses and hosts. However, these actions may make it
easier for an IDS to notice the attacker.



8. Related work

Other research projects have used the idea of causal-
ity to identify the effects of an intrusion. The Repairable
File System [16] identifies potentially tainted files by
tracking the flow of information across operating system
events. While the Repairable File System performs for-
ward causal analysis, it does not track dependencies across
the network or filter the resulting graph to prioritize the
likely paths of an intrusion. In the database area, work
by Ammann, Jajodia, and Liu tracks the flow of contami-
nated transactions through a database and rolls data back
if it has been affected directly or indirectly by contami-
nated transactions [3].

In addition to our approach of using causality, other
techniques have been used to track multi-hop attacks.
Work by Zhang and Paxson detects “stepping stones” used
to carry interactive communication across multiple hops
by seeing which packets have correlated size and tim-
ing characteristics [15]. Wang and Reeves extend this
approach by manipulating the timing of packets to more
easily correlated packets across multiple hops [14]. Our
approach has advantages and disadvantages compared to
prior approaches. The main disadvantage is that our ap-
proach requires one to monitor each host in the chain.
Hence our approach is suitable mainly for communication
within a single administrative domain. The main advan-
tage of our approach is that it is independent of timing
because it can track actual cause-and-effect chains, rather
than relying on less robust characteristics such as timing.
Hence our approach can track non-interactive multi-hop
attacks, such as worms (even stealthy ones).

Many prior researchers have sought to correlate IDS
alerts to reduce false positives [11] [4] [9]. Most prior
projects correlate IDS alerts based on shared features,
such as source or destination IP addresses of packets or
the time at which the IDS alert occurred. Other projects
use prior knowledge about sequences of actions to con-
nect IDS alerts together into an attack scenario. Our work
adds a new way to connect IDS alerts, by tracking actual
cause-and-effect chains to connect prior alerts with later
ones.

9. Conclusions and future work

Causality provides a new mechanism for enhancing IDS
alerts. Instead of seeing each IDS alert in isolation, one
can use causality to see which events and state led up to
the IDS alert, and which events and state were influenced
by the state detected by the IDS. BDB follows causal re-
lationships both forward and backward and follows causal
relationships across multiple hosts.

The mechanism of causality can be used in a variety of
ways to increase the accuracy and reach of IDS alerts. We

demonstrated how causality was able to track the Slapper
worm as it spread within a local network. We also showed
how causality tracked a manual attack that spread via dif-
ferent attack vectors, and we showed how causality could
be enhanced with application-specific knowledge to track
an e-mail virus. Finally, we showed how causality can
correlate distinct network and host IDS alerts to reduce
the number of false positives.

In the future, we plan to explore how the causal graph
generated by BDB can be used as a standalone host IDS.
An administrator can specify or profile a set of causal
graphs for each network service, then restrict the system
to generate an alert if it sees a causal graph outside of this
set. We also plan to study what types of causal relation-
ship are most likely to connect related IDS alerts.

In summary, we believe that causality is a useful way to
gain additional information from existing IDS alerts. By
leveraging true positives found by existing an IDS, BDB
can find other hosts that were also compromised and can
correlate distinct alerts to form fewer, higher-confidence
alerts.
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