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ABSTRACT

Mobile web browsing is slow. With advancement of
networking techniques, future mobile web browsing
is increasingly limited by serial CPU performance.
Researchers have proposed techniques for improving
browser CPU performance by parallelizing browser al-
gorithms and subsystems. We propose an alternative
approach where we parallelize web pages rather than
browser algorithms and subsystems. We present a pro-
totype, called Adrenaline, to perform a preliminary eval-
uation of our position. Adrenaline is a server and a web
browser for parallelizing web workloads. The Adrenaline
system parallelizes current web pages automatically and
on the fly – it maintains identical abstractions for both
end-users and web developers.

Our preliminary experience with Adrenaline is en-
couraging. We find that Adrenaline is a perfect fit for
modern browser’s plug-in architecture, requiring only
minimal changes to implement in commodity browsers.
We evaluate the performance of Adrenaline on a quad-
core ARM system for 170 popular web sites. For one ex-
periment, Adrenaline speeds up web browsing by 3.95x,
reducing the page load latency time by 14.9 seconds.
Among the 170 popular web sites we test, Adrenaline
speeds up 151 out of 170 (89%) sites, and reduces the
latency for 39 (23%) sites by two seconds or more.

1 INTRODUCTION

Web browsing on mobile devices is slow, yet recent
reports from industry show that performance is criti-
cal [11, 19]. Google and Microsoft reported that a 200ms
increase in page load latency times resulted in “strong
negative impacts”, and that delays of under 500ms sec-
onds “impact business metrics” [16].

One source of overhead for web-based applications
(web apps) is the network [18]. Engineers have attempted
to mitigate this source of overhead with increased net-
work bandwidth, prefetching, caching, content delivery
networks, and by ordering network requests carefully.

A second and increasing source of overhead for web
apps is the client CPU [6, 10]. Web browsers combine
a parser (HTML), a layout engine, and a language en-
vironment (JavaScript), where the CPU sits squarely on
the critical path [3, 7, 12]. Even though the serial per-
formance of mobile CPUs continues to increase, the
constraints on mobile device form factors and battery
power imposes fundamental limitations on further im-
provement.

Component % of CPU 4 cores 16 cores

V8 16% 1.13 1.17
X & Kernel 17% 1.14 1.19

Painting 10% 1.08 1.10
libc+Qt 25% 1.23 1.31

CSS 4% 1.03 1.04
Layout/Render 22% 1.20 1.27

Other 6% 1.05 1.06

Table 1: Breakdown of CPU time spent on web brows-
ing. The last two columns predict the ideal speed ups
with Amdahl’s law, assuming that either 4 or 16 cores
are available.

Recent work proposes exploiting parallelism to
improve browser performance on multi-core mobile
platforms [5, 15], including parallel layout algo-
rithms [3, 12], and applying task-level parallelism to the
browser [9]. These special cases, however, only speed
up web apps that make heavy use of specific features,
like cascading style sheets (CSS), or they are limited to
the tasks that the browser developers identify ahead of
time. Unfortunately, years of sequential optimizations,
the sheer size of modern browsers, and the fundamen-
tally single-threaded event-driven programming model
of modern browsers make it challenging to generalize
this approach to refactor today’s browsers into parallel
applications.

Our position is that browser developers should fo-
cus on parallelizing web pages. By taking a holistic
approach, we anticipate an architecture that can work
on a wide range of existing commodity browsers with
only a few minor changes to their implementation, rather
than a major refactoring of existing browsers or a re-
implementation of these mature and feature-rich appli-
cations.

To back up our position, we present the design for
Adrenaline, a prototype system that attempts to speed
up web apps for multi-core mobile devices, like smart
phones and tablets. Adrenaline consists of two com-
ponents, a server-side preprocessor and a client (i.e.,
browser) that renders pages concurrently on the mobile
device. The Adrenaline server decomposes existing web
pages on the fly into loosely coupled sub pages, or mini
pages. The Adrenaline browser processes mini pages in
parallel. Each mini page is a “complete” web page that
consists of HTML, JavaScript, CSS, and so on, running
in a separate process. Therefore, the Adrenaline browser
can download, parse, and render this web content in
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Figure 1: Workflow of Adrenaline when accessing wikipedia.org. In this figure, each of the numbers, 1-4, show the
four mini pages Adrenaline uses for this web page. The Adrenaline server acts as a proxy between the Adrenaline
browser and the Internet. It fetches the web page, optimizes and decomposes it into mini pages, then sends them
back to the Adrenaline browser. The Adrenaline browser downloads and renders mini pages in parallel using multiple
processes. To preserve the proper visual and programmatic semantics, the Adrenaline browser aggregates the displays
for all mini pages, forwards DOM and UI events between mini pages, and synchronizes DOM interactions. Solid lines
between the Adrenaline browser and the Adrenaline server show the mappings of mini pages.

parallel while still using a single-threaded and mature
browser on the client.

2 WHY ADRENALINE?
To support our position, we present the performance
characteristics of web browsing workloads to estimate
potential performance improvements from parallelizing
web browser subsystems.

We picked 170 web pages from the 250 most popular
web sites according to Alexa [1], and mirrored them on
our local network. We ran a QtWebkit-based browser and
loaded each web page 20 times on a quad-core, 400 MHz
ARM Cortex-A9 platform (refer to Section 6 for detailed
set up), and instrumented its execution with OProfile [14]
to derive the time spent on different components in the
browser.

Table 1 categorizes the CPU time spent on web
browsing into six components: (1) the V8 JavaScript en-
gine [8] (V8), (2) The Linux kernel and X server (X &
Kernel), (3) Qt Painting and rendering (Painting), (4) libc
and other components in Qt (libc+qt), (5) CSS Selection
(CSS), (5) WebKit layout and rendering (Layout/Ren-
der), (6) everything else (Other). Table 1 also shows the
ideal speed-ups based on Amdahl’s law when the plat-
form has 4 or 16 cores, assuming each component can be
parallelized completely.

Table 1 shows two findings: (i) no single component
dominates the execution time, and (ii) potential gains
from component-level task parallelism are moderate (up
to 1.31x speed-ups for 16 cores).

These results suggest that browser developers should

look at system-level ways to exploit parallelism in web
browsing – parallelizing a single component results in
limited speed-ups. For example, Meyerovich et al. re-
ported a 80x speed up for their parallel layout algo-
rithm [12], yet when other researchers implemented a
similar scheme in Firefox their results showed a more
modest speed up (1.6x), even on a layout-dominated
web site [3]. It is challenging to estimate the overall
speedup from parallelizing each component, in partic-
ular, because redesigning a component for task-level
parallelism provides benefits beyond the exploiting the
concurrency of the algorithm: the component becomes
thread-safe, and therefore its execution may overlap with
other components. The overlap is bounded by the web
specifications and page structure, thus providing addi-
tional evidence that web page decomposition is required
to achieve the full potential of browser parallelization.

3 THE ADRENALINE ARCHITECTURE

This section describes the overall Adrenaline architec-
ture. Figure 1 shows the workflow when a user accesses
wikipedia.org with the Adrenaline browser. First, the
browser issues a request to the Adrenaline server. Sec-
ond, the Adrenaline server fetches the contents of the
web page, optimizes and decomposes it into mini pages.
Third, the browser downloads, parses, and renders each
of these mini pages in separate processes running in par-
allel. The browser is responsible for properly aggregating
content into a single display, synchronizing global data
structures, and propagating DOM and UI events to main-
tain correct web semantics. In this figure, the server de-
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composes the wikipedia.org page into four mini pages
and the browser runs four processes in parallel to render
the page.

This architecture offers four unique advantages com-
pared to other techniques for parallelizing web browsers.
First, Adrenaline is a data parallel system. It parallelizes
web pages, rather than specific components in web
browsers. Conceptually all components in a web browser
can now be executed in parallel. Second, decomposition
reduces the total amount of work from some tasks, par-
ticularly layout and rendering because of smaller work-
ing sets for each mini page. Third, careful decomposi-
tion could potentially remove serialization bottlenecks.
Specifically, Adrenaline isolates JavaScript into a sin-
gle mini page to allow tasks such as layout and ren-
dering in other mini pages to run concurrently. Fourth,
pre-processing the pages on the Adrenaline server cre-
ates opportunities to shift computation from the client to
the server.

This architecture does also introduce two sources of
overhead that the Adrenaline system must overcome.
Fundamentally, the architecture places a proxy in be-
tween the Adrenaline browser and the Web. This ad-
ditional component will add latency for individual net-
work connections when compared to connecting to web
sites directly. In addition, this architecture uses more re-
sources on the mobile device through its use of multiple
processes. Despite these inherent sources of overhead,
the Adrenaline browser speeds up the overwhelming ma-
jority of sites we tested, as we demonstrate in Section 6.

4 DESIGN CHALLENGES

Designing the Adrenaline system presents three key
challenges. First, Adrenaline has to generate web apps
that look the same from the user’s perspective. Second,
Adrenaline has to ensure that the semantics of web apps
remains the same, from the web developer’s perspective.
Third, Adrenaline has to minimize the overhead induced
by this multi-process architecture.

In this section, we discuss our techniques for main-
taining visual compatibility, JavaScript and DOM com-
patibility, and techniques to reduce synchronization over-
head. In Section 5, we describe our server-side algorithm
for decomposing web pages.

4.1 Visual compatibility
The Adrenaline browser is designed to be visually com-
patible with traditional mobile browsers, and to maintain
identical side effects when the user interacts with a page.
In the Adrenaline browser, a main page is responsible for
this compatibility.

The main page assembles other mini pages in its dis-
play, and captures all external UI events. It is also re-
sponsible for rerouting events to mini pages. Figure 2

Main Page 
Mini Page 

linkClickHandler() { 
    // process event 
} 

Mouse 
Event 

DOM onclick 

Aggregate display 

Figure 2: Event routing. This figure shows how
Adrenaline handles a mouse click on a link. All data is
forwarded through Adrenaline’s inter-process communi-
cation (IPC) channels.

Foo = getElementById(’Bar ’);

getElementById(id) {
foreach(m in minipages)

if(m->contains(id)) { // Merge
n = createNode(fetchDOM ());
m->parent ->replaceChild(n, m);

}
· · ·

}
<div>

<p> <p id="Bar"> · · · <p> <p id="Bar">

(1)

(2)
(3)

(4)

(5)

Figure 3: Merging a mini page. During merging,
Adrenaline (1) issues a request to the remote mini page
that (2) reads, (3) serializes, and (4) returns the results
back to the main page. Then (5) the main page inserts
the remote DOM into its own DOM before terminating
the remote mini page.

shows an example of Adrenaline’s event routing mecha-
nisms. Consider the case where a user clicks on a link in a
mini page. First, the main page routes the mouse event to
the corresponding mini page based on the location of the
mouse pointer. After the mini page processes the mouse
event and determines that the click was on a link, the
mini page wraps it into a onclick DOM event, like a
traditional browser would. Then, the mini page forwards
the DOM event to the main page where the JavaScript
event handler runs.

4.2 JavaScript and DOM compatibility
Adrenaline has to preserve the semantics of JavaScript
in order to run legacy web apps correctly. The problem
becomes challenging if JavaScript is distributed across
multiple mini pages. Therefore, the current implementa-
tion of Adrenaline chooses to put all JavaScript into one
process (i.e., the main page) as a solution.

When JavaScript code accesses remote DOM states,
it merges mini pages into the main page on demand.
A common example is that the JavaScript code calls
getElementById() to get a reference for a DOM ele-
ment. In Figure 3, the first line of JavaScript runs in the
main page and gets a reference to the element Bar. The
Adrenaline browser runs this code, and once it finds out
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that the element Bar resides in a remote mini page, it
asks the remote mini page to serialize its entire DOM
and to send it back to the main page. The main page then
inserts the remote mini page’s DOM into its own DOM
and terminates the remote mini page. After the main page
merges a mini page, it can access the DOM states locally
that used to reside in the mini page, and JavaScript exe-
cution can proceed.

Although Adrenaline runs all JavaScript in a single
mini page, this architecture still has significant benefits
for web pages where the JavaScript code accesses only
a subset of the DOM. For these types of web pages the
Adrenaline browser can process the DOM elements not
accessed by JavaScript in separate mini pages, in paral-
lel, without blocking on JavaScript execution like a tra-
ditional browser would.

The architecture of Adrenaline could introduce
races when rendering web pages, but the Adrenaline
browser handles these cases correctly. When traditional
web browsers encounter JavaScript code, they exe-
cute the code with the current state of the DOM. In
the Adrenaline browser each mini page builds up its
own DOM structure in parallel, so when JavaScript
code executes, the Adrenaline browser has to ensure
that JavaScript accesses the correct DOM state. The
Adrenaline browser inspects the program counter and
call stack to ensure correctness. We omit the details here.

4.3 Minimizing synchronization overhead
JavaScript code calls getElementById() to get a ref-
erence for a specific DOM element, thus calls to
getElementById() must check against each mini page
for the requested element. The Adrenaline server com-
putes a Bloom filter [4] for all elements in each mini
page, and sends the filters along with the main page.
The main page only sends inter-process requests to mini
pages that can possibly contain the element (whose cor-
responding Bloom filters will have positive results), thus
saving inter-process communication.

This is a safe optimization because a Bloom filter can
only have false positives but not false negatives, meaning
that an element is absent in the set if the testing result of
Bloom filter is negative.

5 THE ADRENALINE SERVER

From a high level, the Adrenaline server renders the web
page, and extracts information about the rendered web
page (e.g., element sizes, bounding boxes, and where el-
ements are located visually on the page). It uses this in-
formation as inputs to a heuristic algorithm to decompose
the page into mini pages. After the Adrenaline browser
loads the page, it provides feedback to the server, such as
any unanticipated DOM merges, to help the server adjust
future decomposition of the same page.

In general, the algorithm tries to balance three main
constraints. First, Adrenaline tries to keep JavaScript
code and the DOM elements that the JavaScript code ac-
cesses in the same mini page to avoid merge operations.
Second, Adrenaline uses only a continuous segment of
the original DOM in mini pages to help simplify the im-
plementation of merging. Third, Adrenaline ensures that
mini pages occupy non-overlapping visual blocks (rect-
angles) to simplify mini page display and event handling.

In addition to decomposing pages, the Adrenaline
server also optimizes mini pages and sends extra in-
formation to the browser. For example, the Adrenaline
server customizes CSS rules for each individual mini
page, and provides the Adrenaline browser with hints
about resources that the page includes to enable pre-
fetching.

Due to space limitations, we omit the full details of
the Adrenaline decomposition algorithm and the full de-
tails of the server-side optimizations we perform on mini
pages.

6 EXPERIENCE WITH ADRENALINE

We implemented the Adrenaline server as a HTTP proxy
that fetches web pages and decomposes them on the
fly automatically. This architecture mirrors closely the
server-side architecture for other mobile browsers, like
Opera mini, Skyfire, and Amazon Silk [2, 13, 17].

The Adrenaline browser uses the WebKit rendering
engine and the V8 JavaScript engine. We use the Qt
Toolkit to implement the platform specific portions of the
browser. Mini pages are implemented as browser plugins
in Adrenaline to reuse existing mechanisms to maintain
visual compatibility. Our changes were rather minimal,
and we believe that the same techniques are applicable
to commodity browsers.

To test the performance of our prototype and to test
the efficacy of the basic Adrenaline approach, we ran
the Adrenaline browser on a CoreTile Express A9x4
ARM development board. The board has a quad-core
Cortex-A9 CPU running at 400MHz and 768MB of
DDR2 RAM. We tested Adrenaline on 170 of the most
popular web sites (according to Alexa), and we com-
pared against an unmodified version of a WebKit-based
browser (which is called QtBrowser in later sections). To
isolate the effects our our algorithms we mirror the web
pages on our local network and connect to the server via
a FastEthernet connection.

Our preliminary experience with Adrenaline is en-
couraging. Overall, Adrenaline reduces the page load la-
tency by 1.75s on average, where industry considers a
0.5 second latency reduction as meaningful [11, 16, 19].
Adrenaline improves the page load latency time by 1.54x
on average across the entire workload. For one exper-
iment, Adrenaline speeds up web browsing by 3.95x,
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reducing the page load latency time by 14.9 seconds.
Among the 170 popular web sites we tested, Adrenaline
speeds up 151 out of 170 (89%) sites, and reduces the
latency for 39 (23%) sites by two seconds or more.

7 CASE STUDY: WIKIPEDIA

This section describes a case study for the perfor-
mance characterization of the Wikipedia entry for the
Nokia page. We instrument the execution of both the
Adrenaline browser and the QtBrowser with OProfile to
collect run-time statistics.

Figure 4 describes the high-level performance char-
acteristics of this case. Adrenaline reduces the page load-
ing time by 11.7 seconds.

The case study contains a timeline graph and a work-
load graph. The timeline graph plots the total page load-
ing time for QtBrowser and for Adrenaline. The top-most
bar represents the total page load latency for QtBrowser.
The shaded bars below represent the page load latency
of the Adrenaline main page and mini pages. Thus, the
total page load latency for the Adrenaline browser is de-
termined by the shaded bar that completes last. For com-
parison, we load each mini page individually with Qt-
Browser and report its execution time with the corre-
sponding white bar.

The workload graph classifies the workload of the
two browsers into six disjoint categories: (1) the V8
JavaScript engine (V8), (2) The Linux kernel (Kernel),
(3) Qt Painting and rendering (Painting), (4) CSS Se-
lection (CSS), (5) WebKit sans CSS Selection (WK w/o
CSS), and (6) libc and other components in Qt (libc+Qt).
These six categories consume most of the CPU time. The
execution time of each of these six components is nor-
malized with respect to the total time spent by the Qt-
Browser to load the original page. For comparison, the
workload graph stacks the execution of all Adrenaline
processes into one bar even though their execution over-
laps in the system.

The timeline graph in Figure 4 shows that the
Adrenaline server decomposes the page into three pages,
and the Adrenaline browser is able to render them in par-
allel. This page is large enough for Adrenaline to harvest
a sufficient amount of independent work for each mini
page.

Parallelism by itself, however, does not fully explain
why Adrenaline is so much faster than QtBrowser. The
workload graph shows that there is almost a 3x reduction
for both CSS and WK without CSS. For CSS, the decom-
position brings in two benefits: (1) the Adrenaline server
speeds up CSS for Mini Page 1 and 2 through inlining
CSS rules. (2) CSS selection runs on fewer elements in
the main page (30% of the original page), reducing the
total amount of work.

Case I: http://en.wikipedia.org/wiki/Nokia
Latency: QtBrowser: 16.7s, Adrenaline: 4.99s
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Figure 4: Performance analysis for http:
//en.wikipedia.org/wiki/Nokia.

For WK without CSS, analysis reveals that the execu-
tion time reduction can be attributed to layout and render-
ing primarily. The decomposition enables the main page
to treat both Mini Page 1 and Mini Page 2 as “black-
boxes” during layout and rendering. The main page is
no longer responsible for rendering elements inside mini
pages, as the mini pages running are responsible for ren-
dering them, which happens in parallel. For layout, the
main page has fewer elements to layout, since it only
needs to layout the remaining elements plus the contain-
ers of mini pages. Relayout, which the browser could
trigger during loading in response to various events, is
also simplified for the same reason: the rendering of in-
dividual elements in mini pages is deferred to the mini
pages themselves and happens in parallel.

8 SUMMARY AND FUTURE WORK

In this paper, we advocated that browser develop-
ers should think about parallelizing web pages, rather
than individual components of web browsers. Based on
our initial experience with Adrenaline, we believe that
Adrenaline can improve significantly the performance of
web browsing on mobile devices.
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We plan to further investigate the performance of
Adrenaline under more realistic network conditions and
hardware configurations. In addition, we plan to explore
more heuristics on page decomposition, as well as pro-
viding APIs for web developers to express page-level
parallelism. Finally, we plan to apply Adrenaline to a
larger set of web sites to evaluate our techniques more
comprehensively.
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