
Verifying Security Invariants in ExpressOS

Haohui Mai Edgar Pek Hui Xue
Samuel T. King P. Madhusudan
University of Illinois at Urbana-Champaign

{mai4,pek1,huixue2,kingst,madhu}@illinois.edu

Abstract
Security for applications running on mobile devices is important.
In this paper we present ExpressOS, a new OS for enabling high-
assurance applications to run on commodity mobile devices se-
curely. Our main contributions are a new OS architecture and our
use of formal methods for proving key security invariants about our
implementation. In our use of formal methods, we focus solely on
proving that our OS implements our security invariants correctly,
rather than striving for full functional correctness, requiring signif-
icantly less verification effort while still proving the security rele-
vant aspects of our system.

We built ExpressOS, analyzed its security, and tested its perfor-
mance. Our evaluation shows that the performance of ExpressOS
is comparable to an Android-based system. In one test, we ran the
same web browser on ExpressOS and on an Android-based sys-
tem, and found that ExpressOS adds 16% overhead on average to
the page load latency time for nine popular web sites.

Categories and Subject Descriptors D.4.6 [Operating Systems]:
Security and Protection; D.2.4 [Software Engineering]: Soft-
ware/Program Verification

General Terms Security, Verification

Keywords mobile security; microkernel; programming by con-
tracts; automatic theorem proving

1. Introduction
Modern mobile devices have put a wealth of information and ever-
increasing opportunities for social interaction at the fingertips of
users. At the center of this revolution are smart phones and tablet
computers, which give people a nearly constant connection to the
Internet. Applications running on these devices provide users with
a wide range of functionality, but vulnerabilities and exploits in
their software stacks pose a real threat to the security and privacy
of modern mobile systems [7, 18].

Current work on secure operating systems has focused on for-
malizing UNIX implementations [14, 36] and on verifying micro-
kernel abstractions [17, 20]. Although these projects approach or
achieve full functional correctness, they require a large verification
effort (the seL4 paper claims that it took 20 man-years to build and
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prove [20]) and detailed knowledge of low-level theorem-proving
expertise.

This paper presents ExpressOS, a new OS we designed to pro-
vide high assurance security mechanisms for application security
policies, and a verified implementation of the mechanisms that Ex-
pressOS uses to enforce security policies. Our design includes an
OS architecture for coping with legacy hardware safely, a program-
ming language and run-time system for building our operating sys-
tem, and a set of proofs on our kernel implementation that provide
high assurance that our system can uphold the security invariants
we define.

A key novelty of our verification approach is to focus on a set of
security invariants of the code without attempting full-blown func-
tional correctness. For example, we have verified that the private
storage areas for different applications are isolated in ExpressOS.
We do not derive this security invariant by showing the every as-
pect of all involved components, like the file systems and the device
drivers, is correct. Instead, ExpressOS isolates the above compo-
nents as untrusted system services. The proofs show that Expres-
sOS encrypts all private data of applications before sending it out
to the system services, and ExpressOS places security checks cor-
rectly so that only the application itself can access its private data.

The proofs focus on seven security invariants covering secure
storage, memory isolation, user interface (UI) isolation, and secure
IPC. By proving these invariants, ExpressOS enables sensitive ap-
plications to provably isolate their state (mostly ensuring integrity
of state; confidentiality is also ensured to a certain degree, but side-
channel attacks are not provably prevented), and run-time events
from malicious applications running on the same device.

We achieve the proofs of these invariants by annotating source
code with formal specifications written using mathematical abstrac-
tions of the properties, using code contracts [23] and BOOGIE-
based tools [8, 22], writing ghost-code annotations that track and
update these mathematical abstractions according to the code’s
progress, and by discharging verification using either abstract inter-
pretation or automatic theorem provers (mainly SMT solvers [12]).
A thorough verification of the invariants above requires only a mod-
est annotation effort (⇠ 2.8% annotation overhead).

To evaluate the security and the performance of ExpressOS, we
have built a prototype system that runs on x86 hardware and exports
a subset of the Android/Linux system call interfaces. To evaluate
security, we have examined 383 recent vulnerabilities listed in
CVE [9]. The ExpressOS architecture successfully prevents 364
of them. To evaluate performance, we have used an ASUS Eee
PC and run a web browser on top of ExpressOS. Our experiments
show that the performance of ExpressOS is comparable to Android:
ExpressOS shows 16% overhead for the web browsing benchmark.

Our contributions are:

• ExpressOS is the first OS architecture that provides verifiable,
high-level abstractions for building mobile applications.
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Figure 1: Overall architecture of ExpressOS. Android applications
run directly on top of the ExpressOS kernel. Boxes that are left to
the vertical dotted line represent the system services in ExpressOS.
Shaded regions show the trusted computing base (TCB) of the
system.

• ExpressOS shows that verifying security invariants is feasible
with the help of new programming languages and sparse source
code annotations.

• We have built ExpressOS and our experiments show that this
type of OS can be practical and improve the security of software
systems running on mobile devices.

2. ExpressOS overview
The primary goal of ExpressOS is to be a practical, high assur-
ance operating system. As such, ExpressOS should support diverse
hardware and legacy applications. Also, security invariants of Ex-
pressOS should be formally verified.

This section provides an overview to the architecture, the verifi-
cation approach, and system components of ExpressOS. Section 5
discusses the security implications of our architecture and the de-
tailed design of the ExpressOS kernel.

2.1 Architecture for verification
Figure 1 describes the architecture of ExpressOS. The architecture
includes the ExpressOS kernel, system services, and abstractions
for applications.

ExpressOS uses four main techniques to simplify verification
effort. First, ExpressOS pushes functionality into microkernel ser-
vices, just like traditional microkernels, reducing the amount of
code that needs to be verified. Second, it deploys end-to-end mech-
anisms in the kernel to defend against compromised services. For
example, the ExpressOS kernel encrypts all data before sending it
to the file system service. Third, ExpressOS relies on programming
language type-safety to isolate the control and data flows within
the kernel. Fourth, ExpressOS makes minor changes to the IPC
system-call interface to expose explicitly IPC security policy data
to the kernel. By using these techniques, ExpressOS isolates large
components of the kernel while still being able to prove security
properties about the abstractions they operate on.

Current techniques to isolate components and manage the com-
plexity of a kernel include software-fault isolation [6, 30, 35], iso-
lating application state through virtualization [2, 10, 37], and mi-
crokernel architectures [14, 17, 20, 36]. These techniques alone,
however, are insufficient for verifying the implementation of a sys-
tem’s security policies – the correctness of the security policies still
relies on the correctness of individual components. For example, an

isolated but compromised file system might store private data with
world-readable permissions, compromising the confidentiality of
the data.

2.2 Design principles
In order to meet the overall goal of ExpressOS, three design prin-
ciples guide our design:

• Provide high-level, compatible, and verifiable abstractions. Ex-
pressOS should provide high-level, compatible abstractions
(e.g., files) rather than low-level abstractions (e.g., disk blocks),
so that existing applications can run on top of ExpressOS, and
developers can express their security policies through familiar
abstractions. More importantly, the security of these abstrac-
tions should be formally verifiable to support secure applica-
tions.

• Reuse existing components. ExpressOS should be able to reuse
existing components to reduce the engineering effort to support
production environments. Some of the components might have
vulnerabilities. ExpressOS isolates these vulnerabilities to en-
sure they will not affect the security of the full system.

• Minimize verification effort. Fully verifying a practical sys-
tem requires significant effort, thus the verification of Expres-
sOS focuses only on security invariants. Also, this principle
enables combining lightweight techniques like code contracts
with heavywieght techniques like Dafny annotations [22] to fur-
ther reduce verification effort.

2.3 Verification approach
Our modular design limits the scope of verification down to the
ExpressOS kernel. The ExpressOS kernel is implemented in C#
and Dafny [22], both of which are type-safe languages. Dafny is a
research programming language from Microsoft Research that re-
searchers use to teach people about formal methods. Like SPIN [4]
and Singularity [17], type-safety ensures that the ExpressOS kernel
is free of memory errors, and provides fine-grain isolation between
components within the kernel. A static compiler compiles both C#
and Dafny programs to object code for native execution.

We verify security invariants in ExpressOS with both code con-
tracts and Dafny annotations. Code contracts are verified using ab-
stract interpretation techniques, which have low annotation over-
head but are unable to reason about complicated properties, like
properties about linked lists. In contrast, Dafny annotations are ver-
ified using logical constraint solvers, which are capable of handling
complicated properties, but require a heavy annotation burden and
deep expertise in formal methods to use. Based on their charac-
tertics, we verified simpler security invariants using code contracts,
and more complex ones (like manipulation of linked lists) in Dafny,
where we use ghost variables (i.e., variables that aid verification) to
connect the proofs of both techniques. The combination enables
high productivity for verification using code contracts, yet still re-
taining the the full expressive power of Dafny to verify complicated
properties needed to prove security invariants.

We verify security invariants that involve asynchronous execu-
tion contexts by reducing them into the object invariants of relevant
data structures (Please see Section 4 for more about object invari-
ants). Verification in asynchronous execution contexts is challeng-
ing due to the separation of the control and data flows. Verifying
only the security invariants, however, has a simple solution. In par-
ticular, we express security invariants and the object invariants of
relevant data structures in terms of ghost variables, and the object
invariants imply the original security invariants. The main advan-
tage is that these object invariants can be reasoned about locally;
therefore it is easier to verify them rather than reason about asyn-
chronous execution contexts.



2.4 The ExpressOS kernel
The ExpressOS kernel is responsible for managing the underlying
hardware resources and providing abstractions to applications run-
ning above. The ExpressOS kernel uses L4 to access the underlying
hardware. L4 provides abstractions for various hardware-related
activities, such as context switching, address space manipulation,
and inter-process communication (IPC). L4 resides in the TCB of
ExpressOS, although a variant of L4, seL4 [20], has been fully for-
mally verified.

2.5 System services
ExpressOS separates subsystems as system services running on top
of the ExpressOS kernel. These services include persistent storage,
device drivers, networking protocols, and a window manager for
displaying application GUIs and handling input. ExpressOS reuses
the existing implementation from L4Android [21] to implement
these services.

All these services are untrusted components in ExpressOS.
They are isolated from the ExpressOS kernel. The isolation com-
bined with other techniques (discussed in Section 5) ensures that
the verified security invariants remain valid even if a system service
is compromised.

2.6 Application abstractions
The ExpressOS kernel exports a subset of the Android system
call interfaces directly to applications. These abstractions include
processes, files, sockets, and IPC. ExpressOS supports unmodified
Android applications like a Web Browser to run on top of it directly.

The ExpressOS kernel provides an alternative set of IPC inter-
faces that is more amenable to formal verification, but still enables
applications to perform Android-like IPC operations. First, it ex-
poses all IPC interfaces as system calls rather than using ioctl
calls. Second, it requires all IPC channels to be annotated with per-
missions, so that the ExpressOS kernel can perform access control
on IPC operations. This design choice enables us to verify IPC op-
erations in ExpressOS.

3. Threat Model
An untrusted Android application runs directly on ExpressOS.
Such an application contains arbitrary code and data, along with
a manifest listing all its required permissions. The user grants all
permissions listed on the manifest to the application once he or
she agrees to install it into the system. ExpressOS must be able to
confirm that all activities of the application conform to its permis-
sions, and all security invariants defined by ExpressOS (discussed
in Section 5) must hold during the lifetime of the system.

ExpressOS should be able to isolate multiple applications. An
application must not be able to compromise any security invariants
of other applications.

The TCB of ExpressOS includes the hardware, the L4 microker-
nel, the compilers, and the language run-time. All system services
in ExpressOS, however, are untrusted. ExpressOS should be able
to maintain its security invariants for all applications even if the
system services execute arbitrary code.

This paper focuses only on confidentiality and integrity; avail-
ability is out of the scope of this paper.

4. Formal methods background
In this section, we describe a few basic verification related concepts
for readers who are not familiar with formal techniques. Experi-
enced readers could skip this section.

The idea of verification is to use a verifier to reason about
the implementation of a program: whether its behavior matches

programmer’s intentions, which are formalized and referred to as
the specification.

The Floyd-Hoare style approach to verification achieves modu-
lar verification by annotating each function/method with pre- and
post-conditions, and annotating the rest of the code with appropri-
ate assertions that capture the specification. In this paper we focus
on proving safety properties, which models properties that fail in
finite time (availability is not a safety specification, typically). In
particular, a pre-condition (post-condition) specifies certain asser-
tions that have to hold before (after) executing a function. Object
invariants refer to assertions that have to hold both before and after
executing any methods in the object. Figure 4 shows an example of
pre- and post-conditions used in ExpressOS.

Complex specifications, such as the security specifications we
prove in our code, cannot always be stated in terms of assertions on
the program state that is in scope at the point of assertion. This leads
us to use ghost code in the verification. Ghost code is code added
to the original program to aid formal reasoning during verification
but is not needed at run-time. Ghost code changes only the ghost
states associated with ghost variables, which are annotated with the
keyword ghost. The ghost state can never change the semantics of
the original code (for instance, a conditional on a ghost variable
followed by an update of a real program variable is disallowed,
syntactically). Furthermore, ghost code must always be provably
terminating.

Ghost variables can range over mathematical types that are not
supported in the programming language, including abstract sets,
lists, etc., and can be used for abstracting the data contained in
the program using mathematical objects, and thus encode specifi-
cations naturally (for example, a ghost sequence variable can track
the sequence of keys stored in a linked list and we can then assert
that this sequence is sorted). Apart from the ghost code for mathe-
matical abstractions of the specification, the code is also annotated
with additional information to prove a property of a correct pro-
gram (typical examples include updating ghost states to reflect how
the code meets the specification, inductive invariants on loops to
facilitate automated reasoning for recursion, etc.). One good exam-
ple of ghost variables in use is the CurrentState variable shown
in Figure 4, which help maintain information during verification
about the current state of the Page object.

The verification system (ours are based mostly on the suite of
BOOGIE-based verification tools, including Dafny) proceeds to ver-
ify the code by taking straight-line fragments flanked by pre- and
post-annotations, and derives verification conditions, which capture
the semantics of the program, and are purely logical statements
whose validity implies correctness of the code segments. These
logical statements are, thanks to ghost code, often expressible in
quantifier-free first-order theories combining arithmetic, arrays, re-
cursive data-structures, sets, sequences, etc., and can be discharged
using automatic constraint solvers, especially the emerging power-
ful class of SMT solvers.

For some of the simpler specifications, a completely automatic
analysis based on abstract interpretation is feasible. We use the
code contracts framework to achieve this in ExpressOS.

5. Proving security invariants
This section describes that how we apply the techniques described
in Section 2 to verify security invariants on the implementation of
storage, memory management, user interface, and IPC in Expres-
sOS.

5.1 Secure storage
The storage system of ExpressOS provides guarantees of access
control, confidentiality, and integrity for applications, yet still offers
the same sets of storage APIs as Linux. The storage system is



implemented as an additional layer on top of the basic storage APIs
(e.g., open(), read(), and write()), which are provided by the
untrusted storage service.

static SecureFSInode Create(Thread current,
ByteBufferRef metadata,
...)

{
...
var ret = InitializeAndVerifyMetadata(...);
...

var metadata_verified = ret == �;
...

var access_permission_checked
= SecurityManager.CanAccessFile(current, metadata);

...

// Verify both Property 1 and Property 2
Contract.Assert(metadata_verified

&& access_permission_checked);

return ...;
}

Figure 2: Relevant code snippets in C# for Property 1 and Prop-
erty 2.

The first security invariant for secure storage that the ExpressOS
kernel enforces is:

SI 1. An application can access a file only if it has appropriate per-
missions. The permissions cannot be tampered with by the storage
service.

An application can implement its security policy directly on top
of SI 1. For example, an application might restrict the permission
of a file so that only the application itself has access to it.

Since other compromised components such as the storage ser-
vice and device drivers can affect SI 1, the first step of verifying
SI 1 is to isolate the effects of these services. The ExpressOS kernel
uses the HMAC algorithm [3] to achieve this goal. The ExpressOS
kernel prepends several pages to all files managed by the secure
storage system. These pages store metadata such as permissions,
the size of the file, as well as an HMAC signature of these pages.
The ExpressOS kernel checks the HMAC signature to ensure the
integrity of the metadata when loading the file into the memory.

Now SI 1 can be reduced to the following two lower level
properties:

Property 1 (Integrity-Metadata). The signature of a file’s meta-
data is always checked before an application can perform any op-
erations on it.

Property 2 (Access Control). An application can only access a file
when it has appropriate permissions.

Figure 2 shows relevant code of Property 1 and Property 2.
The Create() function calls InitializeAndVerifyMetadata()
to verify the HMAC signature of the metadata. Then it calls
SecurityManager.CanAccessFile() to determine whether the
current process has appropriate permissions to open the file. Fi-
nally, the annotation of Contract.Assert() instructs the verifier
to prove that both the integrity of the metadata, and the access
permission of the file have been checked.

The reduction is a trade-off between formal verification and
practicality. We argue that pragmatically the conjunction of Prop-
erty 1 and Property 2 implies SI 1. The reduction captures the im-

portant fact that ExpressOS misses no security checks in its ac-
cess control logic, which is the main point of verifying Expres-
sOS. It does assume the implementation of relevant libraries like
AES / SHA-1, and the one of InitializeAndVerifyMetadata()
and SecurityManager.CanAccessFile() is correct. These com-
ponents can be verified independently, and a verified implementa-
tion can be plugged into the system to further strengthen the proof.1
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Figure 3: State transition diagram for the Page object. Ellipses rep-
resent the states. Solid and dotted arrows represent the successful
and failed transitions.

The ExpressOS kernel also enforces integrity and confidential-
ity of its secure storage system:

SI 2. Only the application itself can access its private data. Neither
other applications nor system services can access or tamper with
the data.

Similar to SI 1, the ExpressOS kernel uses encryption to de-
fend against compromised system services. From a high level, it
partitions a file into multiple pages, and then it encrypts each page
with AES for confidentiality. To ensure integrity, it signs each en-
crypted page with the HMAC algorithm, and packs the results to
the metadata of the file. The overall implementation is similar to
Cryptfs [39].

ExpressOS assigns each application a different private key dur-
ing installation; therefore SI 2 can be reduced to the following two
properties:

Property 3 (Confidentiality). Every page is encrypted before it is
sent to the storage service.

Property 4 (Integrity). Each page loaded from the storage service
has the appropriate integrity signature.

The idea behind verifying Property 3 and Property 4 is to use
the ghost variable CurrentState to record the current state of the
page. Figure 3 shows the state transition diagram for a Page object.
A page can be in the state of Empty, Verified, Decrypted, and
Encrypted, meaning that (1) the page is empty, (2) its integrity
has been verified, (3) its contents have been decrypted, and (4) its
contents have been encrypted. To verify these properties, we spec-
ify the valid state transitions as the pre- and post-conditions of the
relevant functions. For example, the specifications of Decrypt()
state that the page should has its integrity verified before entering
the function, and its contents are decrypted afterwards.

Figure 4 shows the relevant code snippets. Notice that Prop-
erty 3 can be specified as a pre-condition of the function Flush():
the function can only be called if the page is in the Encrypted state.

1 The InitializeAndVerifyMetadata() function parses binary data read
from the disk and verifies its integrity, which is easier implemented in
C. To demonstrate the feasibility of this approach, we have implemented
InitializeAndVerifyMetadata() in C, and verified its correctness with
VCC [8].



class CachePage {
enum State { Empty, Verified, Decrypted, Encrypted }
[Ghost] State CurrentState;

void Encrypt(...) {
Contract.Requires(CurrentState == State.Empty

|| CurrentState == State.Decrypted);
Contract.Ensures(CurrentState == State.Encrypted);
...

}

void Decrypt(...) {
Contract.Requires(CurrentState == State.Verified);
Contract.Ensures(CurrentState == State.Decrypted);
...

}

// Verify the integrity of the page,
// Returns true if the page is authentic.
bool VerifyIntegrity(...) {

Contract.Requires(CurrentState == State.Encrypted);
Contract.Ensures(!Contract.Result<bool>()

|| CurrentState == State.Verified);
...

}

// Load the content of the page from
// the storage service.
bool Load(...) {

Contract.Requires(CurrentState == State.Empty);
Contract.Ensures(!Contract.Result<bool>()

|| CurrentState == State.Encrypted);
...

}

void Flush(...) {
Contract.Requires(CurrentState == State.Encrypted);
...

}
}

Figure 4: Relevant code snippets in C# for Property 3 and Prop-
erty 4. Contract.Requires() and Contract.Ensures() specify
the pre- and post-conditions of the functions.

For compatibility reasons, ExpressOS does allow an application
to create unencrypted, public readable files. ExpressOS, however,
does not provide additional security invariants for these files.

5.2 Memory isolation
The ExpressOS kernel enforces proper access control and isolation
for all memory of the applications:

SI 3. If a memory page of an application is backed by a file, the
pager can map it in if and only if the application has proper access
to the file.

SI 4. An application cannot access the memory of other applica-
tions, unless they explicitly share the memory.

The challenge of verifying SI 3 is that there is insufficient
information available for verification at the point of assertions (i.e.,
in the pager). This is because the security checks are executed
in different contexts, where both the control and data flows are
separated in these two contexts.

ExpressOS addresses this challenge by connecting the informa-
tion indirectly through the object invariants of relevant data struc-
tures. It strengthens these object invariants to contain information

static uint HandlePageFault(Process proc,
uint faultType,
Pointer faultAddress,
Pointer faultIP)

{
Contract.Requires(proc.ObjectInvariant());

...
AddressSpace space = proc.Space;
var region = space.Regions.Find(faultAddress);

if (region == null || (faultType & region.Access) == �)
return �;

...
var shared_memory_region = IsSharedRegion(region);
var ghost_page_from_fresh_memory = false;

if (shared_memory_region)
{

....
}
else
{

page = Globals.PageAllocator.AllocPage();
ghost_page_from_fresh_memory = true;
...

if (region.File != null)
{

// Assertion of Property 5
Contract.Assert(region.File.GhostOwner == proc);
var r = region.File.Read(...);
...

}
...

}

Contract.Assert(shared_memory_region
ˆ ghost_page_from_fresh_memory);

...
}

Figure 5: Code snippets for the page fault handler.

about the security checks, so that the object invariants can derive
the desired security invariants.

Figure 5 and Figure 6 show the relevant implementation of the
pagers. From a high level, the ExpressOS kernel organizes the vir-
tual memory of a process with a series of MemoryRegion objects. A
MemoryRegion represents a continuous region of the virtual mem-
ory, which has information on its access permissions and location.
In addition, if the region is mapped to a file, it contains a reference
to the mapped file (i.e., the File field in the MemoryRegion class).
Since we have verified that the ExpressOS kernel properly checks
access to files in Section 5.1, SI 3 can be reduced to the following
property:

Property 5. When the page fault handler serves a file-backed page
for a process, the file has to be opened by the same process.

The key of verifying Property 5 is to use a ghost variable to
record the ownership of the relevant objects, and to specify object
invariants based on the ownership. For example, the first assertion
in Figure 5 specifies Property 5, which gets verified through a series
of object invariants.

First, the AddressSpace class represents the virtual address
space of a process by a sequence of MemoryRegion objects. Intu-
itively the AddressSpace object “owns” all MemoryRegion objects



class MemoryRegion {
...
var File: File;
var GhostOwner: Process;

function ObjectInvariant() : bool ... {
File != null ==> File.GhostOwner == GhostOwner
...

}
}

class Process {
var space: AddressSpace;

function ObjectInvariant() : bool ... {
space != null && space.GhostOwner == this
...

}
}

class AddressSpace {
var GhostOwner: Process;
var Head: MemoryRegion;

// Ghost variable to record the sequence of
// MemoryRegions owned by this AddressSpace
ghost var Contents: seq<MemoryRegion>;

function ObjectInvariant() : bool ... {
forall x :: x in Contents ==>

x != null && x.ObjectInvariant()
&& x.GhostOwner == GhostOwner;

...
}

method Find(address: Pointer) returns (ret: MemoryRegion)
requires ObjectInvariant();
ensures ObjectInvariant();
ensures ret != null ==>

ret.ObjectInvariant() && ret.GhostOwner == GhostOwner;

method Insert(r: MemoryRegion)
requires r != null && r.GhostOwner == GhostOwner;
requires ObjectInvariant() && r.ObjectInvariant();
...
ensures ObjectInvariant();

}

class File { ... var GhostOwner: Process; }

Figure 6: Reduced code snippets in Dafny for the MemoryRegion
and the AddressSpace class.

in the sequence, which is specified in the object invariant of the
AddressSpace object:

8x, x 2 Contents ! x 6= null ^ x.ObjectInvariant()
^x.GhostOwner == GhostOwner

The Find() method looks up and returns the corresponding
MemoryRegion object for the virtual address, therefore it only re-
turns MemoryRegion objects that are owned by the AddressSpace
object. Combining it with the object invariant above can lead to the
post-condition of Find():

ret != null ! ret.ObjectInvariant()^
ret.GhostOwner == GhostOwner

At the first assertion in Figure 5, this is simplified down to:

region.File.GhostOwner == region.GhostOwner
== space.GhostOwner

The object invariant of the proc object ensures that

proc.space.GhostOwner == proc

This leads to the assertion of Property 5.
Property 5 is strictly weaker than the property that ensures full

functional correctness. For example, Property 5 does not enforce
that the file used in page fault handler has to be the exact same file
that was requested by the user. The property, however, shows that
the file must be opened by the same process. It maintains isolation
since the access to the file has been properly checked. Moreover, it
can be verified through object invariants.

We combine code contracts and Dafny to verify this property.
Dafny verifies the MemoryRegion and AddressSpace class, be-
cause Dafny is able to reason about the linked lists in their im-
plementation. The verification results from Dafny are expressed as
properties of ghost variables (i.e., the GhostOwner fields). These
properties are exported to code contracts as ground facts with the
Contract.Assume() statements. Using Contarct.Assume() is a
simple way let code contracts know about proofs about Dafny code.
Additionally, we annotate the GhostOwner fields as read-only fields
in C# to ensure soundness.

SI 4 can be expressed in a slightly different way to ease the
verification.

Property 6 (Freshness). The page fault handler maps in a fresh
memory page when the page fault happens in non-shared memory.

The idea is to ensure that the page fault handler always allocates
a fresh memory page, i.e., a memory page that is not overlapped
with any allocated pages. ExpressOS adopted the verified memory
allocator from seL4 [34] for this purpose. ExpressOS dedicates a
fixed region to this allocator in order to implement this property.
The reduction allows specifying this property as the second asser-
tion in Figure 5.

5.3 UI isolation
The ExpressOS kernel enforces the following UI invariant:

SI 5. There is at most one currently active (i.e., foreground) appli-
cation in ExpressOS. An application can write to the screen buffer
only if it is currently active.

To write to the screen, an application requests shared mem-
ory from the window manager, and writes screen contents onto
the shared memory region. In ExpressOS, this can only be done
through an explicit API so that the ExpressOS kernel knows ex-
actly which memory region is the screen buffer.

The ExpressOS kernel enforces SI 5 by explicitly enabling and
disabling the write access of screen buffers when changing the
currently active application.

The object invariant of UIManager in Figure 7 specifies SI 5.
The boolean ghost variable ScreenEnabled (which is not shown in
the paper) denotes whether the application has write access to the
screen. The initial value of ScreenEnabled is set to false for each
application. Since it is the only API to manipulate the screen, the
object invariant implies that only the current application has write
access to the screen buffer.

5.4 Secure IPC
To simplify verification, ExpressOS provides an alternative, secure
IPC (SIPC) interface over the Android’s IPC interface. First, SIPC
exposes all IPC functionality explicitly through system calls to
eliminate the implementation and verification efforts on complex
logic in ioctl() of Android’s IPC. Second, the ExpressOS kernel
enforces proper access controls for SIPC, compared to relying on



class UIManager
{

Process ActiveProcess;

[ContractInvariantMethod]
void ObjectInvariantMethod() {

Contract.Invariant(ActiveProcess == null
|| ActiveProcess.ScreenEnabled);

}

void OnActiveProcessChanged(Process next) {
Contract.Requires(next != null);
Contract.Ensures(ActiveProcess == next);
...

}

void DisableScreen() {
Contract.Ensures(ActiveProcess == null);
Contract.Ensures(

!Contract.OldValue(ActiveProcess).ScreenEnabled);
...

}

void EnableScreen(Process proc) {
...
Contract.Ensures(ActiveProcess == proc);
Contract.Ensures(ActiveProcess.ScreenEnabled);
...

}
}

Figure 7: Relevant code snippets for SI 5. [ContractInvariant-
Method] annotates the method that specifies the object invariants.

the receiver of Android’s IPC for proper access control. This design
moves the access control logic of SIPC into the ExpressOS kernel.

SIPC provides basic functionality to the applications, including
creating SIPC channels, connecting to SIPC channels, and sending
and receiving messages over the channel. Applications can still
perform Android-like IPC operations using the SIPC interface.

The ExpressOS kernel enforces the following security invari-
ants for SIPC:

SI 6. An application can only connect to SIPC channels when it
has appropriate permissions.

SI 7. An SIPC message will be sent only to its desired target.

SI 6 and SI 7 can be verified with similar approaches described
above.

SI 6 is an access control invariant, thus the strategy of proving
SI 6 is similar to the one of SI 1. We use a ghost variable to indicate
whether the process has properly checked the permissions when
opening a new SIPC channel.

We follow the proving strategy of Property 5 to verify SI 7. The
idea is to create a SIPCMessage object for each IPC message, and
to introduce a ghost variable target to record the target process of
the message, which provides sufficient information to verify SI 7.

5.5 Verification experience
Overall, we found the verification effort in terms of annotations
practical for the properties that were proven correct. While we de-
veloped the system and wrote code, we came up with the relevant
security properties at the level of the module we were writing, and
formalized it using appropriate annotations. Combining code con-
tracts and Dafny reduced the code to annotation ratio down to about
2.8% (implementing the specification defined by the annotations).
There were some instances where the code we wrote was not actu-

ally correct, and using the verification tools to prove the property
led us to find the error. Equally importantly, formalizing the speci-
fication at the level of the code crystallized the vague properties we
had in mind, and helped us write better code as well.

One lesson that we had in ExpressOS was to refine the shapes
and aliasing information of the objects through redesigning data
structures, and implementing ownership using ghost variables.
Simpler shapes eased the verification. For example, we have reim-
plemented the the MemoryRegion object as a singly-linked list in-
stead of a doubly-linked one, since verifying the manipulations
of the linked list in the latter case requires specifying reachability
predicates, which are difficult to reason about within SMT-based
frameworks. The verification of heap structure properties in Dafny
was achieved sometimes using further ghost annotations in the style
of natural proofs [24, 27].

In simpler cases we used ownership to constrain the effect of
aliasing. For example, the ghost field GhostOwner in the Address-
Space object specified which Process had created the object.
The information was used in proving that each process creates its
own AddressSpace object, effectively forbidding aliasing between
AddressSpace objects of different processes.

One potential drawback we found during verification was that
the specification using ghost code is sometimes too intimately in-
terleaved with the implementation. Consequently, the specification
gets strewn all across the code, and it is our responsibility that this
actually is correct. Though the mathematical abstractions do help to
some extent to distance the specification from the code, ghost up-
dates to these abstractions are still intimately related. To illustrate
this, consider a programmer implementing the code Encrypt()
in Figure 4, and consider the scenario where the actual encryp-
tion fails for some reason, and yet the programmer puts the page
into the Encrypted state. The verifier will go through even though
the implementation is incorrect with respect to what the developer
wanted; the onus of writing the correct specification is on the de-
veloper.

While we did not encounter any case where we noticed we made
errors in inadvertently formulating too weak a specification, we
did spend time double-checking that our specifications were indeed
correct. We think an alternate mechanism for writing specifications
that are a bit more independent from the code, resilient to code
changes, and yet facilitates automated proving would make the
developer’s work more robust and productive.

6. Implementing ExpressOS
The implementation of ExpressOS consists of two parts: the Ex-
pressOS kernel and ExpressOS services. The ExpressOS kernel is
a single-thread, event-driven kernel built on top of L4::Fiasco. We
have implemented the kernel in C# and Dafny, which is compiled
to native X86 code using a static compiler.

User-level helper

L4Linux

Android application

ExpressOS kernel

(1) socket() (6) ret = f 0

(2)

(5)

(3) socket() (4) ret = f

Figure 8: Work flow of handling the socket() system call in
ExpressOS. The arrows represent the sequences of the work flow.

The implementation of ExpressOS kernel includes processes,
threads, synchronization, memory management (e.g. mmap()), se-
cure storage, and secure IPC. The kernel also implements a subset
of Linux system calls to support Android applications like the An-



droid Web browser. The kernel contains about 15K lines of code.
The source code is available at https://github.com/ExpressOS.

The ExpressOS kernel delegates the implementation of sys-
tem calls to ExpressOS services whenever it does not affect the
soundness of the verification. These services include file systems,
networks, device drivers, as well as Android’s user-level services
like window manager and service manager. ExpressOS reuses
L4Android to implement these services. L4Android is a port of
Android to a Linux kernel that runs on top of L4::Fiasco (i.e.,
L4Linux).

The rest of the section describes (i) how to dispatch a system call
to ExpressOS services, (ii) how to bridge Android’s binder IPCs
between ExpressOS and Android’s system services, and (iii) how
to support shared memory between an application and ExpressOS
services.

Dispatching a system call to ExpressOS services. The ExpressOS
kernel forwards system calls with IPC calls to L4Android. Figure 8
shows the workflow of handling the socket() system call in the
ExpressOS kernel. When (1) the application issues a socket()
system call to the ExpressOS kernel, (2) the kernel wraps it as an
IPC call to the L4Linux kernel. The L4Linux kernel executes the
system call (which might involve a user-level helper like the step
(3) & (4)), and (5) returns the result back to the ExpressOS kernel.
The ExpressOS kernel (6) interprets the result and returns it to the
application.

It is important for the ExpressOS kernel to maintain proper
mappings between the file descriptors (fd) of the user-level helper
and those of the application. In Figure 8, it maps between the fd
f and f 0 so that subsequent calls like send() and recv() can be
handled correctly. This workflow mirrors the implementation of the
Coda file system inside Linux [19].

Bridging Android’s binder IPC. Android applications communicate
to Android system services (e.g., the window manager) through
the Android’s binder IPC interface. The ExpressOS kernel extends
the mechanism in Figure 8 to bridge the binder IPC. The user-
level helper in Figure 8 acts as a proxy between the Android
application and Android system services. Both the user-level helper
and the ExpressOS kernel transparently rewrite the IPC messages
to support advanced features like exchanging file descriptors.

Supporting shared memory. To support shared memory between
Android applications and Android services, the ExpressOS kernel
maps all physical memory of L4Linux into its virtual address space.
It maps the corresponding pages to the address space of the appli-
cation when sharing occurs. We have modified L4Linux to expose
its page allocation tables so that the ExpressOS kernel is able to
compute the address. Both the ExpressOS kernel and L4Linux use
the L4 Runtime Environment (L4Re) to facilitate this process.

7. Evaluation
This section describes our evaluation of ExpressOS. To evaluate to
what extent that the ExpressOS architecture can prevent attacks,
we examined 383 relevant real-world vulnerabilities to analyze the
security of the system. Then, we present the performance measure-
ments of ExpressOS.

7.1 Vulnerability study
To understand to what extent ExpressOS is able to withstand at-
tacks, we studied 742 real-world vulnerabilities (from Jun, 2011 to
Jun, 2012) listed in CVE. 383 out of 742 are valid vulnerabilities,
and they affect different components used in Android. We manu-
ally examined each of them, and classified it into one of the four
categories based on its location:

In the core of the kernel. The vulnerability exists in the core of the
Linux kernel, which means that the same functionality is imple-
mented in the ExpressOS kernel. The proofs of ExpressOS ensure
that such a vulnerability cannot affect any security invariants dis-
cussed in Section 5. If the vulnerability is irrelevant to the security
invariants, the language run-time ensures it cannot subvert the con-
trol flow and data flow integrity to circumvent the proofs.

In the libraries used by applications. The vulnerability exists in the
libraries used by the applications, like the Adobe Flash Player and
libpng. In the worst case, the attacker can gain full control of ap-
plications by exploiting the vulnerability. ExpressOS ensures that
the compromised application must adhere to its permissions, which
prevents it from accessing other applications’ private data, effec-
tively protecting sensitive applications from compromised applica-
tions.

In system services. The vulnerability exists in the system services
of ExpressOS, including the file system, the networking stack, de-
vice drivers, and Android user-level services. ExpressOS combines
three techniques to contain the vulnerability.

First, ExpressOS uses end-to-end security mechanisms and the
protections provided by the ExpressOS kernel to protect file sys-
tem and network data. For example, both the confidentiality and
integrity of any private data remain intact when the storage ser-
vice is compromised, because SI 2 ensures that the attacker cannot
access or tamper with private data. Similarly, the attacker cannot
eavesdrop or tamper with any TLS/SSL/HTTPS connections, even
if he or she compromises the networking service.

Second, ExpressOS isolates applications and system services,
and restricts updates to the screen (i.e., SI 5) to contain compro-
mises of the window manager service. An attacker with a compro-
mised window manager takes full control of the physical screen.
Successful attacks, however, still require information about UI wid-
gets in the targeted application, and the ability to provide timely vi-
sual feedback to the user. For example, the attacker might steal the
user’s input by overlaying a malicious application running in back-
ground on top of the targeted application. The isolation mechanism
prevents the window manager from accessing the memory of the
targeted application to retrieve the exact locations of UI widgets,
and SI 5 prevents the malicious application running in background
updating the screen to timely react to the user’s input.

Third, the L4 layer isolates the system services and the Expres-
sOS kernel. An attacker can potentially compromise the L4Android
kernel with a vulnerability. However, the ExpressOS kernel remains
intact because the L4 layer manages allocation of physical memory
and the IOMMU, ensuring that the ExpressOS kernel’s memory is
isolated from all system services.

ExpressOS currently does not prevent compromises where a
service acts as a privileged deputy that allows the attacker to use
its permissions to attack the system. For example, “the Bluetooth
service in Android 2.3 before 2.3.6 allows remote attackers within
Bluetooth range to obtain contact data via an AT phone book trans-
fer.” (CVE-2011-4276), and “the HTC IQRD service for Android
... does not restrict localhost access to TCP port 2479, which allows
remote attackers to send SMS messages.” (CVE-2012-2217).

In sensitive applications. If an application is exploited, there is
not much that ExpressOS can do for that application. Although
we proved our implementation of several security policies in Ex-
pressOS, if an application configures its policy incorrectly or its
application logic leads to a security compromise, there is little the
ExpressOS kernel can do to protect it.

Figure 9 summarizes our analysis of 383 vulnerabilities. Ex-
pressOS is able to prevent 364 (95%) of them.

https://github.com/ExpressOS


Location Example Num. Prevented
The core of the kernel Logic errors in the futex implementation allow local users to gain privileges. 9 9 (100%)
Libraries of applications Buffer overflow in libpng 1.5.x allows attackers to execute arbitrary code. 102 102 (100%)
System services Missing checks in the vold daemon allows local users to execute arbitrary code. 240 226 (93%)
Sensitive applications The BoA application stores a security question’s answer in clear text which

allows attackers to obtain the sensitive information.
32 27 (84%)

Total 383 364 (95%)

Figure 9: Categorization on 383 relevant vulnerabilities listed in CVE. It shows the number of vulnerabilities that ExpressOS prevents.

A large portion of vulnerabilities are due to memory errors in
application libraries or in the system services. The verified security
invariants and the protection from the ExpressOS kernel protect the
data of sensitive applications from being compromised.

Out of the 383 vulnerabilities, there are two vulnerabilities
related to covert channels. For example, the Linux kernel before 3.1
allows local users to obtain sensitive I/O statistics to discover the
length of another user’s password (CVE-2011-2494). These types
of vulnerabilities are beyond the scope of our verification efforts
and something ExpressOS is unable to prevent.

7.2 Performance
We evaluate the performance of ExpressOS by measuring the exe-
cution time of a variety set of benchmarks. We compared the per-
formance of benchmarks running on ExpressOS, unmodified L4-
Android, and Android-x86. All experiments run on an ASUS Eee
PC 1005HA with an Intel Atom N270 CPU running at 1.60 GHz,
1GB of DDR2 memory, and a Seagate ST9160314AS 5, 400 RPM,
160G hard drive. Our Eee PC connects to our campus network
through its built-in Atheros AR8132 Fast Ethernet NIC.

Both ExpressOS and L4Android run the L4Linux 3.0.0 kernel.
The Android-x86 runs on top of Linux 2.6.39. All three systems
run the same Android 2.3.7 (Gingerbread) binaries in user spaces.

We evaluate the performance of the Android web browser on
real network, and microbenchmarks evaluating different aspects of
system performance, including IPC, the file system, the graphics
subsystem, and the networking stack. All numbers reported in this
section are the mean of five runs.

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Amazo
n

And
roi

d

Crai
gsl

ist
Eba

y

Face
bo

ok

Goo
gle

W
iki

pe
dia

Word
pre

ss
Yah

oo

Pa
ge

lo
ad

la
te

nc
y(

m
s)

Android-x86
L4Android
ExpressOS

Figure 10: Page load latency in milliseconds for nine web sites for
the same browser under Android-x86, L4Android, ExpressOS over
a real network connection.

Page load latency in web browsing. We measure the page load la-
tency for nine popular web sites to characterize the overall perfor-
mance of ExpressOS compared to L4Android and Android-x86.
The page load latency for a web site is the latency from initial URL

request to the time when the browser fires the DOM onload event.
The app clears all caches between each run.

Figure 10 shows the page load latency for nine web sites of all
three systems. L4Android has 2% overhead on average, suggesting
that the microkernel layer added by ExpressOS adds little overhead
in real-world web browsing.

ExpressOS shows 14% and 16% overhead on average compared
to L4Android and Android-x86.

IPC performance. We uses a simple ping-pong IPC benchmark to
compare the performance of the SIPC mechanism in ExpressOS
against the Android’s Binder IPC mechanism. There are two enti-
ties (the server and the client) in this benchmark. For each round,
the client sends a fixed-size IPC message to the server. The server
receives the message and sends an IPC message back to the client
which has the same content. Then the client receives the reply and
continues to the next round.

We measured the total execution time for 10, 000 rounds of this
benchmark on Android-x86, L4Android and ExpressOS. We mea-
sured the performance with different message sizes, including four
bytes, 1KB, 4KB, 8KB, and 16KB. Figure 11 describes the results
of this benchmark. These numbers show that it is possible to im-
plement a verifiable IPC mechanism in the ExpressOS architecture
without sacrificing efficiency.

Other microbenchmarks. We further evaluate the performance of
ExpressOS with three microbenchmarks, including (1) a SQLite
benchmark (SQLite) which creates a new database, then inserts
25, 000 records in one transaction, and writes all data back to the
disk. (2) A network benchmark (Netcat), which receives a 32M
file from local network. (3) A graphics benchmark (Bootanim),
showing a PNG image, and adding light effects with OpenGL,
which is derived from the boot animation program from Android.

These microbenchmarks help to categorize different aspects of
the ExpressOS’s performance. First, the SQLite benchmark ma-
nipulates the heap heavily, thus it is used to evaluate the per-
formance of memory subsystem. Second, the Netcat benchmark
helps quantify the effects of microkernel servers, because Expres-
sOS delegates all networking operations to L4Android. Finally, the
Bootanim benchmark helps quantify the cost of using user-level
helpers. Manipulating the screen heavily relies on Android’s Binder
IPC and shared semaphores, both of which are forwarded back and
forth between the ExpressOS kernel and the user-level helpers in
L4Android.

Figure 12 describes the results of all three microbenchmarks
above. For the SQLite benchmark, both ExpressOS and L4Android
are about 10% slower than Android-x86. For the Netcat bench-
mark, Android-x86, L4Android, and ExpressOS perform almost
the same. ExpressOS is about 10% slower than L4Android in the
Bootanim benchmark, but surprisingly, Android-x86 performs sig-
nificantly worse than both L4Android and ExpressOS. We suspect
that it might be due to some subtle differences between the kernel
of L4Android and Android-x86, since all three systems are using
the same user-level binaries.
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Figure 11: Performance of the ping-pong IPC benchmark of
Android-x86, L4Android, and ExpressOS. X axis shows the size
of IPC messages, Y axis shows the total execution time of running
10, 000 rounds of ping-pong IPC.
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Figure 12: Performance results of the SQLite, Netcat and the
Bootanim microbenchmark. X axis shows the type of the bench-
mark. Y axis shows their total execution time in milliseconds.

8. Related work
Attempts to eliminate defects of operating systems with full for-
mal verification date back to the late 1970s. Dealing with all details
of real-world operating systems has been a challenge for heavy-
weight full formal verification methods. Verifying OSes that pro-
vide UNIX abstractions has been cumbersome (e.g., UCLA Se-
cure Unix [36], PSOS [14], and KSOS [26] provide partially veri-
fied UNIX abstractions). Hypervisors and microkernels have lower-
level abstractions that are more amenable for verification [5, 8, 16,
20, 28], but they provide lower-level abstractions such as IPC, inter-
rupts and context switches, which are not immediately meaningful
to applications.

The key difference between ExpressOS and the above work is
that the verification of ExpressOS only focuses on security invari-
ants rather than achieving full functional correctness. ExpressOS
ensures that defects in unverified parts of the system cannot subvert
the security invariants. As a result, ExpressOS provides high-level
abstractions (e.g., files) with verified security invariants, and ver-
ifying these security invariants requires only ⇠ 2.8% annotation
overhead.

Alternative approaches to improve security of operating systems
include controlling information flows in operating systems [13, 40],
separating application state through virtualization [2, 10, 37], inter-
cepting security decisions in reference monitors [1, 29], and ex-
posing browser abstractions at lowest software layer [32]. These
techniques reduce the TCB dramatically down to the implementa-

tion of themselves. There are two differences between them and
ExpressOS. First, ExpressOS does not require the applications to
pervasively adopt new APIs, instead it provides Android/Linux sys-
tem calls so that it can run legacy applications directly. Second, Ex-
pressOS provides formally verified abstractions to the applications,
where other techniques trust their implementation.

Implementing OS in safe languages has several benefits, such
as avoiding memory errors, and isolating control and data flows
in a finer granularity [4, 11, 15, 17, 25]. ExpressOS inherits these
benefits, and further verifies that the security invariants in it always
hold using code contracts and Dafny.

The current implementation of ExpressOS trusts the language
run-time and the L4 microkernel. Verve [38] and seL4 [20] have
verified the language run-time and the L4 microkernel. They are
complementary to ExpressOS: ExpressOS can plug them in to
further reduce the size of TCB. ExpressOS might also benefit from
potential hardware support [31, 33].

9. Conclusions
This paper has presented ExpressOS, a new OS architecture that
provides formally verified security invariants to mobile applica-
tions.

The verified security invariants covers various high-level ab-
stractions, including secure storage, memory isolation, UI isolation,
and secure IPC. By proving these invariants, ExpressOS provides a
secure foundation for sensitive applications to isolate their state and
run-time events from malicious applications running on the same
device.

The verification effort on ExpressOS focuses on the most im-
portant properties from a system builder’s perspective rather than
full functional correctness. Also, ExpressOS combines several ver-
ification techniques to further reduce the verification effort. The ap-
proach is relatively lightweight and has about ⇠ 2.8% annotation
overhead.

Our evaluation shows that ExpressOS is effective in preventing
existing vulnerabilities from different attack surfaces. Besides its
strong security guarantees, ExpressOS is a practical system with
performance comparable to native Android.

Our experience suggests that the verification technique we pur-
sue is mature enough to be broadly used by systems developers in
order to obtain lightweight proofs of safety and security by focus-
ing on a small but crucial subset of properties.
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