
Lessons Learned During the Development of the
CapoOne Deterministic Multiprocessor Replay System ∗

Pablo Montesinos, Matthew Hicks, Wonsun Ahn, Samuel T. King and Josep Torrellas
Department of Computer Science

University of Illinois, Urbana-Champaign
{pmontesi, mdhicks2, dahn2, kingst, torrellas}@cs.uiuc.edu

Abstract
Current schemes for deterministic replay of parallel applica-
tions can be of great help for programmers. Software-only
replay systems, while great at operating at the abstraction
of user applications, incur large CPU overheads. Hardware-
only systems produce minimal, if any, CPU overhead, but
because their focus is the low-level hardware primitive that
records and replays the memory access interleaving, they do
not integrate well with user applications. The limitations of
both the software- and hardware-only schemes render them
impractical for most production uses.
Capo is a hardware-assisted deterministic replay frame-

work that combines the performance of hardware-only
schemes with the flexibility of the software-only ones.
CapoOne is the first implementation of the Capo framework.
It has modest overheads and shows that practical determin-
istic replay of production parallel applications is feasible.
This paper brings together a set of lessons learned during
the development of the CapoOne prototype so that designers
of future hardware-assisted deterministic replay systems can
apply them, lessening their pain.

1. Introduction and Motivation
Debugging parallel applications is a complicated task be-
cause certain bugs only appear under hard-to-replicate tim-
ing conditions. Consequently, programmers would benefit
greatly from tools and techniques that could help them de-
bugging these programs.
One such technique is deterministic replay of execution.

Current software-only deterministic replay systems [1, 3, 4,
9, 10] are flexible but they perform slowly on (or do not
work with) multiprocessors. Thus, hardware-based schemes
have been proposed [5, 6, 8, 11, 12]. Even though they
record multiprocessor execution efficiently, they impose re-
strictions on how the users can record and replay applica-
tions, rendering them impractical. Capo [7] defines a set
of OS-level abstractions and a software-hardware interface
for practical hardware-assisted deterministic replay. It com-

∗ This work was supported in part by the National Science Foundation
under grants CNS 07-20593, CNS 08-34738 and CCF 08-11268; Intel and
Microsoft under the Universal Parallel Computing Research Center; and
gifts from IBM, Sun Microsystems, and the Internet Services Research
Center (ISRC) of Microsoft Research.

bines the best of both worlds: it is flexible like the software-
only schemes and is efficient like the hardware-only tech-
niques.
CapoOne is our first implementation of the Capo inter-

face. The current prototype uses DeLorean-like hardware [6]
as the hardware replay substrate. On top of this hardware,
CapoOne runs a standard Linux operating system with a
modified kernel. CapoOne has good performance and it is
able to record and/or replay standard Linux applications.
Moreover, it can independently record and/or replay two or
more user applications that run simultaneously. CapoOne
required a 18 man-month development effort. In this time,
we i) implemented a new hardware simulator for DeLorean,
ii) modified the Linux kernel and iii) developed the Replay
Sphere Manager, a complicated piece of software that man-
ages the hardware/software interaction of the replay system.
In this paper we describe some practical lessons we

learned during the development of CapoOne. In hindsight,
our biggest mistake was to underestimate the time and com-
plexity of the software components. Consequently, our in-
tention with this paper is to expose some key aspects that,
even though they might seem intuitive now, were time-
consuming because they are full of subtleties. We hope that
by exposing them here, we can help researchers, saving pre-
cious development time.
This paper first focuses on the issues that we faced when

we converted a full-system, hardware-based replay system
such as DeLorean [6] into a hardware-assisted replay sys-
tem for user applications. The key element was to make sure
that CapoOne only recorded and replayed instructions that
belonged to the target application. The paper then discusses
how to deal with interrupts and exceptions. Some of these
events are non-deterministic and require saving some state
information into a log so that they can be replayed. Others,
even though they are non-deterministic events as well, can
be treated in a way that does not require CapoOne to record
them in a log —perhaps at the cost of some minor perfor-
mance degradation.
We also describe in detail how CapoOne ensures that

copying data from the kernel into the application is deter-
ministic. This was arguably the hardest piece of code that
we had to write. We give insights on why our first approach

did not work and what was required to get it working cor-
rectly.
This paper is organized as follows. Section 2 presents

our hardware-assisted replay system. Section 3 describes
CapoOne’s hardware changes. Section 4 describes user-to-
kernel transitions and Section 5 describes other system is-
sues.

2. System Overview
This section presents our system. It first describes the con-
cept of the Replay Sphere and its interactions with the sys-
tem. Then, it shows our first implementation CapoOne.

2.1 Capo

Capo [7] presents a software-hardware interface and a set
of abstractions for practical hardware-assisted deterministic
replay of execution. We refer to Capo as hardware-assisted
because in Capo, the software is the driving force of the
replay mechanism while some specialized replay hardware
is in charge of recording the memory access interleaving of
different threads.
The main abstraction in Capo is the Replay Sphere. A

replay sphere is a set of user-level threads that are recorded
and replayed as a unit together with their address space.
Each replay sphere is independent. Therefore, there is no
information on how a thread running inside a sphere (an R-
thread) interleaves with R-threads from other spheres or with
regular threads. Thus, the replay sphere isolates processes
that are being recorded or replayed from the rest.
The replay sphere also helps separating the responsibil-

ities of the hardware and software components. The hard-
ware records and replays the R-thread interleaving in a per-
sphere log called the Interleaving Log. The software records
any other source of non-determinism that may affect the ex-
ecution path of any of the R-threads of a sphere. This per-
sphere log —called the Input Log— includes signals, return
values from system calls and, in general, any data copied
into the replay sphere. In a sense, the hardware records the
non-determinism that occurs inside the sphere while the soft-
ware records non-deterministic events that originate outside
the sphere but that might affect its execution. The reader
should observe that, in the absence of any input from the
kernel or other process in the system, the only source of non-
determinism during the execution of a user-level parallel ap-
plication is its memory access interleaving.
Figure 1 depicts Capo’s architecture. The figure shows

Replay Sphere 1 recording Process A and Replay Sphere 2
replaying Process B and Process C simultaneously. Process
D is executing normally and does not need to run within any
replay sphere. The figure also shows Capo’s main software
component: the RSM or Replay Sphere Manager. The RSM
is in charge of managing logs, assigning spheres to the replay
hardware, etc. The RSM uses a small hardware interface to
interact with the replay hardware and, as a result, Capo can
work with any replay hardware scheme [5, 6, 8, 11, 12].

HW

Replay Sphere 1 Replay Sphere 2

Replay HW

OSRSM

R-thread
1

R-thread
2

R-thread
1

R-thread
2

R-thread
3

thread
502

Process A
Process B

Process C
Process D

Figure 1. Capo’s architecture.

R-threads are part of their replay sphere while they run
in user land. If one of them executes a system call, it leaves
the sphere and its interleaving with the other R-threads in
the sphere is not recorded until it returns from the system
call. We decided to set the replay sphere boundary at the
system call level because Capo’s main goal is to record
and replay applications and the code in the kernel is much
more unpredictable and harder to track than the application’s
code. Alternatively, we could have set the replay sphere
boundary at the library level. That would mean that any Capo
implementation would need to interpose all library calls.
Moreover, libraries would have to be modified so that the
data copied from the library into the application could be
recorded.

2.2 CapoOne

CapoOne is the first implementation of the Capo framework.
As Figure 2 shows, CapoOne’s replay hardware is based on
DeLorean [6]. DeLorean uses a new execution model [2]
where processors continuously execute large groups of con-
secutive dynamic instructions —called chunks— atomically
and in isolation. These chunks are separated by processor
checkpoints, like in hardware transactional memory. In this
environment, recording the execution for replay requires that
the hardware records the total commit order of chunk com-
mits. CapoOne augments DeLorean with Capo’s hardware
interface so that the RSM can manage it. Section 3 gives
more insight into the changes made to DeLorean.
Figure 2 also shows that CapoOne uses a standard, off-

the-shelf Linux operating system. We extended the kernel
to add support for replay spheres and R-threads. We also
implemented new kernel functions for copying data from the
kernel into the replay sphere —and vice versa. They ensure
that the interleaving between the kernel and the R-threads is
deterministic.
Finally, it can be seen in the figure that CapoOne’s RSM

has components in both user and kernel lands. The user-level
one manages both the interleaving and input logs, interposes
R-threads’ system calls and delivers signals. The kernel-
level component manages the replay hardware, schedules
spheres and records the data copied between the kernel and
the replay sphere.

x86-based system

Replay Sphere A

Modified DeLorean

Ubuntu Linux 7.10 with
modified 2.6.24 kernel

Kernel-Level RSM

R-thread
1

R-thread
2

Capo HW Interface

R-thread
3

User-Level RSM

A's
Logs

Figure 2. Capo’s first implementation:CapoOne.

3. From Full-System Replay to Sphere-Based
Replay

Previous hardware-based deterministic proposals [5, 6, 8,
11, 12] record and replay the entire system. CapoOne
just records and replays the software running inside re-
play spheres. Consequently, CapoOne does not log non-
deterministic events such as interrupts or DMA operations.
Instead, it logs i) all inputs to the sphere and ii) the interleav-
ing of the R-threads of the same sphere. Information about
other non-deterministic events is discarded. Because of ii),
CapoOne requires some changes to the DeLorean hardware
—in addition to augmenting to meet Capo’s hardware inter-
face specification.
In DeLorean, it is possible for a chunk to include instruc-

tions from both a user-level thread and the OS. For example,
if a thread issues a system call, the last instructions the thread
executed before the system call and the first few from the
system call handler can end in the same chunk. CapoOne-
must prevent this from happening because an sphere’s inter-
leaving log can only consist of instructions from the same
sphere. As a result, CapoOne’s hardware chunks the dy-
namic instruction stream differently than does DeLorean.
Thus, in CapoOne, chunks can only contain instructions
from one R-thread.
Moreover, when a processor detects that a chunk to be

committed is the last one that belongs to an R-thread before
the OS takes over the processor, the commit request includes
a bit indicating that i) this is the last chunk of the R-thread
for now, and that ii) the following OS chunks should not be
included in the log. This is necessary because the OS can ex-
ecute one or more chunks before it executes the instructions
that manage the replay hardware. CapoOne must ensure that
these OS chunks are not part of the interleaving log.
Non chunk-based Capo implementations must similarly

guarantee that instructions from the OS or from processes
outside the sphere do not pollute the interleaving log.
Lesson learned: Making sure that the interleaving log

only contains instructions from the R-threads in the sphere
can be challenging. However, the alternative solution, mak-
ing sure that the instructions that do not belong to the sphere
are also deterministic, is much more complicated.

4. User to Kernel Transitions
Section 3 described a very important design principle in
CapoOne: the interleaving log cannot include instructions
from software outside the replay sphere. This section de-
scribes how CapoOne transitions from user to kernel land so
that it upholds that design principle while maintaining cur-
rent semantics. We focus on user-to-kernel transitions and
not on kernel-to-user ones because, in the former, CapoOne
must ensure that the status of the replay sphere when R-
threads leave is replayable. Returning to the sphere is always
deterministic if the replay sphere exits were deterministic as
well.

4.1 Interrupts

Interrupts are asynchronous events generated by hardware
devices that alter the instruction stream of the processor.
They are inherently non-deterministic. Full-system hardware-
based replay systems [5, 6, 8, 11, 12] record, for each in-
terrupt, when it arrived and its kind. This is not the case
in CapoOne because interrupts do not directly affect the
execution path of the R-threads inside a sphere. How-
ever, CapoOne —or any other implementation of the Capo
interface—must ensure that kernel code in the interrupt han-
dler is not recorded as part of the sphere’s interleaving log.
Due to CapoOne’s chunk-based execution, the interrupt

delivery policy balances three conflicting demands: size of
the interleaving log, interrupt latency and amount of wasted
work due to squashes. Thus, there are three different ap-
proaches to interrupt handling, that we call: Finish First,
Commit First and Squash First.
In Finish First, a processor does not service an inter-

rupt until the in-flight chunk reaches its predefined size and
commits. Completing and committing the chunk might take
some time —chunks are thousands of instructions long—
so this increased interrupt latency can hurt performance if
the system is executing under a heavy interrupt load. On the
other hand, because the committed chunk reached the prede-
fined size, CapoOne does not need to record anything in the
interleaving log.
In Commit First the processor does not wait for the chunk

to reach the desired chunk size. Instead, it tries to commit
the not-yet-completed chunk first and it then starts servic-
ing the interrupt. As a result, the chunk’s final size is non-
deterministic and it must be recorded in the interleaving log.
However, the interrupt response time is better than in Finish
First.
Finally, in Squash First, when an interrupt arrives, the

processor squashes any in-flight chunk that has not sent its
commit request to the arbiter yet. This approach is simple
and allows for a fast and relatively constant interrupt re-
sponse time. As a drawback, it can cause some performance
degradation due to frequent squashes.
Lesson learned: It is sometimes possible to treat highly

non-deterministic events—such as interrupts— as determin-
istic events. For example, Squash First and Finish First do
not require any information to be recorded in the log. This is

why we use Squash First in CapoOne. Moreover, it is simple
to implement and did not cause any significant overhead in
our experiments.

4.2 Exceptions

Exceptions are synchronous events that alter the dynamic in-
struction stream of the processor. Some of them are raised
when the processor detects an anomalous condition while
executing an instruction —faults and traps— and others are
generated at the request of the programmer —programmed
exceptions. Obviously, exceptions must be treated differently
than interrupts, because exceptions must be delivered at pre-
cisely the right moment. CapoOne’s design goal is to main-
tain correct exception semantics; this section describes how
CapoOne handles each exception type.

4.2.1 Handling Faults

A fault is a type of exception where the instruction that
caused it re-executes after the anomalous condition has been
solved. In order to maintain correct exception semantics,
CapoOne must finish and commit the chunk containing all
the dynamic instructions preceding the one causing the fault.
Executing the fault handling code means that the processor
leaves the replay sphere until the kernel completes the fault
handling and the user-level execution is resumed. Therefore,
the faulting instruction becomes the first instruction of the
new chunk when it re-executes.

inst m
inst n

inst w

inst z

inst m
inst n

inst n

inst v
inst w

OS
Fault

Handler

(a)

inst m
inst n

inst n

inst v
inst w

OS
Fault

Handler

Original
Execution

Replay

inst m
inst n

inst v
inst w

(b)

inst v
inst w

OS
Fault

Handler

inst z inst z

inst z

Replay Replay

(c) (d)

Time

Figure 3. Fault handling in CapoOne.

Although faults are synchronous events, they are not nec-
essarily deterministic. Consequently, CapoOne logs the size
of the last chunk committed before the faulting instruction
and uses that size information to recreate the same chunk
during replay.
Consider Figure 3(a). Instruction n causes a page fault,

so CapoOne must prematurely commit a chunk that finishes
at instruction m. It must also log the chunk’s size in the
interleaving log. The OS takes over and services the page
fault. Once the R-thread resumes, instruction n becomes the
first instruction of the new chunk and it re-executes. This
new chunk commits normally when it reaches the predefined

chunk size —which happens right after instruction z. Fig-
ures 3(b), 3(c) and 3(d) show that there are three possible
behaviors when CapoOne replays a fault.
In Figure 3(b), the processor uses the log to produce a

chunk whose last instruction is instruction m. Later, the
processor starts a new chunk, and the same instruction n
causes a page fault, making the system proceed in the same
way as in the original execution.
Consider now Figure 3(c). As in Figure 3(b), the proces-

sor decides—based on the information in the log— to chunk
the dynamic instruction stream at instruction m. However,
instruction n does not fault this time. Then, the processor
continues executing the chunk normally until it reaches the
predefined chunk size.
Finally, Figure 3(d) shows the case where a fault occurs

during replay but not during the initial execution. In the fig-
ure, instruction w causes an unexpected fault so the proces-
sor commits a second chunk whose last instruction is v. Note
that CapoOne does not log anything now because it is replay-
ing. Also, notice that in order for the replay to be determin-
istic, no other processor can commit any chunk belonging to
another R-thread in the sphere until the rest of the instruc-
tions in the original chunk are committed. Thus, the proces-
sor creates a new chunk starting at instruction w and ending
at instruction z. Once this new chunk commits, the replay
sphere state is identical to the one at the end of Figure 3(a).
Lesson learned: Faults are non-deterministic events that

must be handled properly. The most difficult case is depicted
in Figure 3(d), where a fault occurs in replay and not in the
initial execution.

4.2.2 Handling Traps and Programmed Exceptions

Processors raise traps and programmed exceptions after the
execution of a trapping instruction. Once the OS handles
them and the application resumes, the next instruction to
execute is the one following the one that caused the trap.
Processors must exit the replay sphere to let the OS handle
traps and exceptions, so these events also cause an early
commit of a processor’s in-flight chunk.
As with faults, CapoOne tries to maintain the correct

trap and programmed exception semantics. They differ from
faults in two main aspects. First, the instruction that raises
them is always the last one of the chunk. And second, they
are deterministic and, therefore, CapoOne does not need to
record the “irregular-sized” chunks they produce.
Lesson learned: Traps and programmed exceptions are

deterministic events and require no extra logging.

5. System Issues
We learned lessons about several other system-wide issues.
We describe them in this section.

5.1 Moving Data Between the Kernel and the Replay
Sphere

In Capo, copying data into1 the replay sphere is a delicate
matter. First, the RSM must record in the input log the
data about to be copied. And second, it must ensure that
the interleaving between the kernel thread injecting the data
and the R-threads in the sphere is deterministic. This is
because some R-thread might concurrently access the same
memory region where the kernel is copying data into, and the
hardware does not record the interleaving of code outside the
replay sphere.
CapoOne addresses this problem by temporarily inserting

the kernel’s function in charge of the copy (copy to user)
into the sphere. Once the kernel thread executing the func-
tion is inside the sphere, the hardware records the interleav-
ing of the kernel thread chunks with the chunks of the R-
threads of the sphere. After the copy is over, copy to user
exits the replay sphere.
Making sure that the interleaving between copy to user

and the R-threads in the sphere was deterministic gave us
many headaches. In our first implementation, the RSM as-
sociated the data copied by copy to user with the system
call exit event corresponding to the system call that executed
copy to user. At that time, it made sense that the input log
entry corresponding to the system call exit event would also
contain the data that the system call copied into the replay
sphere. During replay, right before a system call returned,
the RSM would inject the data into the sphere. We believed
that from the point of view of an R-thread it did not matter at
which point of the system call execution the OS copied data
into the sphere.
This simple and intuitive approach worked for many of

our applications. Unfortunately, it would cause deadlock in
certain situations due to circular dependences between the
input log and the interleaving log. To understand why, the
reader must note that the RSM records in the input log the
order in which R-threads enter and exit system calls. During
replay, the RSM enforces the same ordering.
Consider Figure 4(a). During initial execution, R-thread

A executes a system call that copies some data into the re-
play sphere. After copy to user is over, but before the OS
exits the system call and resumes A execution, B executes
a system call as well. In the input log, B’s system call enter
comes before A’s system call exit event. In the interleaving
log, the copy to user chunks come before B’s chunk fin-
ishing in the system call enter instruction. The arrows in the
figure show these dependences
Consider now Figure 4(b). In the figure, the system dead-

locks while trying to replay the execution from Figure 4(a).
The reason is that the RSM associated the copy to user
event with the system call exit event in the input log and it
is waiting for thread B to execute a system call. At the same
time, the hardware follows the interleaving log and cannot

1 A similar case can be made for copying data from the sphere.

Initial Execution

A

B

Syscall
Enter

Syscall
Exit

Syscall
Enter

Syscall
Exit

copy_to_user

Replay - Faulty RSM

A

B

Syscall
Enter

Syscall
Exit

Syscall
Enter

Syscall
Exit

copy_to_user

SW Dependence
HW Dependence

(a) (b)

Figure 4. Circular dependences between the input log and the
interleaving log cause deadlocks during replay.

let B commit the chunk that executes the system call until
the copy to user have been executed.
To solve this problem in a new RSM implementation,

copy to user events are their own entity and they are no
longer associated with system call exit events. In hindsight,
it is an obvious solution, but this was not the case during the
development because our first solution works well as long
as there is only one R-thread executing a system call and all
the other R-threads are in user mode (i.e. no system calls,
exceptions, etc).
Lesson learned: It is possible to have circular depen-

dences between the input log and the interleaving log. These
dependences can cause deadlocks under certain interleav-
ings. We recommend making copy to user events a first-
order event in the input log.

5.2 Cache Overflows

BulkSC-based [2] systems such as CapoOne keep the cur-
rent chunk’s speculative data in the cache until commit time.
However, a chunk may access more lines mapping to a
cache set than ways the set has. Certain transactional mem-
ory schemes allow storing speculative state in main memory.
This is not the case for the current BulkSC-based systems.
When a cache would overflow, CapoOne commits the in-
flight chunk independently of its size.
Caches are not part of the replayable state, and therefore

cache overflows are non-deterministic. Thus, in the event
of a cache overflow, CapoOne must record the size of the
prematurely-committed chunk. During replay, the proces-
sors use the information in the log to create chunks of the
same size of those prematurely committed due to cache over-
flows.
Lesson learned: The instruction that caused the over-

flow does not necessarily become the first instruction of the
next chunk. In CapoOne, processors can freely reorder mem-
ory operations within a chunk and even across consecutive
chunks of the same processor. As a result, a memory oper-
ation not at the top of the reorder buffer can cause a cache
overflow.

5.3 Self-Modifying Code

Just as strict isolation of data accesses within a chunk must
be enforced by hardware, isolation of instruction memory

must also be enforced. In the case of CapoOne, this is done
by adding all instruction fetches to the read set of the chunk.
Thus, at commit time, a code-modifying chunk is able to de-
tect other chunks that have read and executed a stale version
of the code and squash them, maintaining correct ordering.
In addition, instruction cache coherence is maintained by
having a committing chunk flash-invalidate its write set in all
instruction caches, as well as the data caches. No recording
of the code modification event has to take place in the inter-
leaving log since maintaining the same ordering of chunks at
replay time is sufficient for ensuring that the self-modifying
event is deterministically replayed. During replay, the same
hardware mechanism is used to invalidate the instruction
caches.
Besides remote code modification, local code modifica-

tion must also be detected. In the case of CapoOne, all in-
struction fetches are checked against the local write set to
make sure they are not fetching stale instructions. On detec-
tion, the current chunk is immediately committed to make
the modified code memory available for execution and a new
chunk is started. The new chunk would then fetch the correct
modified instruction from its data cache which has the most
recent copy. Again, no recording needs to take place in the
replay log since local code modification is deterministic.
Lesson learned: Self-modifying code events are fully

deterministic and they can be handled seamlessly with the
same hardware support. Moreover, these event do not need
to be stored in any log.

6. Conclusions
CapoOne is a hardware-assisted replay system that allows
the user to record and deterministically replay parallel appli-
cations running on shared-memory multiprocessors. It has
modest overheads and shows that practical deterministic re-
play of applications is possible. This paper is a collection of
lessons that we learned during its development.
For example, this paper described how isolating instruc-

tions that belong to an application that is being recorded
or replayed can be a delicate issue. It also showed how
interrupts and exceptions are important sources of non-
determinism and how CapoOne deals with them. Another
key issue during CapoOne’s development was to make sure
that data copied from the kernel into the application mem-
ory was deterministic. In this paper, we described how our
first implementation of the software that manages the replay
system could deadlock during replay due to dependences
between the hardware and software logs, and we show how
we fixed it in the second implementation.
Finally, we believe that these lessons can be of use for re-

searchers building their hardware-assisted deterministic re-
play systems.

7. Acknowledgements
We thank Naveen Neelakantam for his invaluable help with
the simulation infrastructure. We thank the anonymous re-
viewers and the I-ACOMA group for their comments. Spe-

cial thanks go to Brian Greskamp and Abdullah Muzahid for
their feedback. We thank Chris Munger for coming up with
the Capo name.

References
[1] T. C. Bressoud and F. B. Schneider, “Hypervisor-Based

Fault-Tolerance,” in Proceedings of the 1995 Symposium
on Operating Systems Principles, December 1995.

[2] L. Ceze, J. M. Tuck, P. Montesinos, and J. Torrellas,
“BulkSC: Bulk Enforcement of Sequential Consistency,”
in International Symposium on Computer Architecture, June
2007.

[3] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and P. M.
Chen, “ReVirt: Enabling Intrusion Analysis through Virtual-
Machine Logging and Replay,” in Proceedings of the 2002
Symposium on Operating Systems Design and Implementa-
tion (OSDI), December 2002.

[4] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and
P. M. Chen, “Execution Replay of Multiprocessor Virtual
Machines,” in VEE ’08: Proceedings of the fourth ACM
SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, ACM, March 2008.

[5] D. R. Hower and M. D. Hill, “Rerun: Exploiting Episodes
for Lightweight Memory Race Recording,” in Proceedings of
the 35th International Symposium on Computer Architecture
(ISCA), June 2008.

[6] P. Montesinos, L. Ceze, and J. Torrellas, “DeLorean:
Recording and Deterministically Replaying Shared-Memory
Multiprocessor Execution Efficiently,” in International
Symposium on Computer Architecture, June 2008.

[7] P. Montesinos, M. Hicks, S. T. King, and J. Torrellas, “Capo:
a Software-Hardware Interface for Practical Deterministic
Multiprocessor Replay,” Proc. of the International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), vol. 44, no. 3, 2009.

[8] S. Narayanasamy, C. Pereira, and B. Calder, “Recording
Shared Memory Dependencies Using Strata,” in Internationl
Conference on Architectural Support for Programming
Languages and Operating Systems, October 2006.

[9] M. Russinovich and B. Cogswell, “Replay for Concurrent
Non-Deterministic Shared-Memory Applications,” in Pro-
ceedings of the 1996 Conference on Programming Language
Design and Implementation, May 1996.

[10] S. Srinivasan, S. Kandula, C. Andrews, and Y. Zhou, “Flash-
back: A Lightweight Extension for Rollback and Determin-
istic Replay for Software Debugging,” in Proceedings of the
USENIX Annual Technical Conference, General Track, 2004.

[11] M. Xu, R. Bodik, and M. D. Hill, “A ”Flight Data Recorder”
for Enabling Full-System Multiprocessor Deterministic Re-
play,” in International Symposium on Computer Architecture,
June 2003.

[12] M. Xu, M. D. Hill, and R. Bodik, “A Regulated Transitive
Reduction (RTR) for Longer Memory Race Recording,”
in Internationl Conference on Architectural Support for
Programming Languages and Operating Systems, October
2006.

