
MAVMM: Lightweight and Purpose Built VMM for Malware Analysis

Anh M. Nguyen, Nabil Schear, HeeDong Jung, Apeksha Godiyal, Samuel T. King
Department of Computer Science

University of Illinois at Urbana-Champaign
{anguyen7, nschear2, jung42, godiyal2,kingst}@illinois.edu

Hai D. Nguyen
Hanoi University of Technology

haind93@gmail.com

Abstract—Malicious software is rampant on the Internet
and costs billions of dollars each year. Safe and thorough
analysis of malware is key to protecting vulnerable systems and
cleaning those that have already been infected. Most current
state-of-the-art analysis platforms run alongside the malware,
increasing their detectability. This reduces the value of analysis
because some malware is known to behave differently when
being analyzed. Virtualization offers a compelling platform
for malware analysis, with strong isolation and the ability to
save and restore guest state. Current virtual machine monitors
(VMMs), however, are not designed for malware analysis. Due
to their complexity, they often fail to provide transparency
and even expose vulnerabilities which could be exploited by
the malware running inside guest system.

We propose a lightweight VMM (namely MAVMM) that is
designed specially for a single job: malware analysis. MAVMM
does not implement unnecessary virtualization features com-
monly found in general purpose hypervisors, including virtual
device emulation. We take advantage of hardware virtual-
ization support to make MAVMM more simple, secure and
transparent. In this paper, we describe the design and imple-
mentation of MAVMM, and the features that we can extract
from programs running inside the guest OS. We evaluate
our platform in three aspects: functionality, detectability and
performance. We show that our system can extract useful infor-
mation from malicious software, and that it is not susceptible
to known virtualization detection techniques.

Keywords-Malware analysis; virtual machine monitors; se-
curity;

I. INTRODUCTION

Malware–a representative term for viruses, worms, spy-
ware, trojan horses, adware and rootkits–is a major threat to
today’s highly connected computing environments. Annual
damage from malware is estimated to be more than 10 billion
dollars [11], more than 40 percent of companies worldwide
report business disruptions due to malware [7], and 55% of
all online users believe their systems had been infected [9].
All signs point toward malware becoming a more significant
threat in the future.

Malware analysis plays a crucial role in countering this
trend. Through detailed analysis of a particular malicious
application, security researchers will be able to gain insight
into its intention, its runtime behaviors, and the risk that it
creates. This knowledge is very valuable in predicting the
threats posed by the malware, creating appropriate anti-virus
signatures, developing tools to patch infected systems, and

in some cases tracing back to the criminal behind it. Tradi-
tional tools for malware analysis include disassemblers [36],
debuggers [48], and black box analysis such as function call
tracing (e.g., strace) and network sniffers [8]. While these
methods are useful to some extent, each suffers from certain
drawbacks. Disassembling, like other static analysis tech-
niques, can be circumvented by packing or dynamic code
translation [26, 43]. Dynamic black box analysis only gives
an incomplete view of the malware’s behaviors. Debugging,
on the other hand, provides a more exhaustive view but is
vulnerable to debugger fingerprinting [42, 19]. As malware
gets more and more complex, it is often impractical and
unnecessary to analyze each and every instruction.

Another common approach in malware analysis is to
deploy analyzing tools in conjunction with virtualization
technology, taking advantage of its strong isolation, and its
ability to take snapshots and roll back the guest’s state.
In addition, VMM-based analyzers have a unique ability
to monitor virtual machine based rootkits [27, 35]. Com-
modity virtual machine monitors (VMMs) such as Xen and
VMWare have already been used in malware analysis [51,
10]. Unfortunately, we are facing an advanced and intelligent
enemy. Malware writers have deployed increasingly complex
techniques to evade detection and prevent forensic analysis,
using side channels [34] or artifacts of the virtualization
platform [29, 13]. When the malware detects it is running
inside a virtual machine, it often exits to prevent further
analysis. Recent malware, such as the infamous Storm and
some versions of Conficker are known to behave in this
fashion [49, 50]. Other types of malware even try to act
differently to fool analyzers of their intention [12] There-
fore, detectability of the virtualization platform will greatly
affect accuracy of the analysis system. General purpose
VMMs, including Xen and VMWare, are inherently not
suitable for this task. They are designed for functionality
and performance, not transparency. As one example, to
support virtualization of multiple virtual machines running
multiple guest OSes at the same time, these VMMs need to
implement virtual device emulation. This device emulation
usually leads to the inclusion of a host OS with millions
of lines of code inside their trusted computing base (TCB).
Due to their complexity, commodity VMMs often fail to
provide transparency. A recent study by Garfinkel et al. [17]

shows that device emulation is the main source of logical and
timing discrepancies between virtualized and non-virtualized
environment. Putting detectability aside, these features also
expose many vulnerabilities that could be exploited by the
malware under analysis to escalate privileges, DOS the
analysis platform, or bypass security restrictions. As an
evidence, there have been at least 17 known vulnerabilities
in Xen 3.x, 42 in VMware Workstation 6.x, and 165 in
VMware ESX Server 3.x [37, 38, 39]. If the VMM layer
can be easily compromised, it becomes very risky to trust
the analysis platform based upon it.

In this paper, we propose the architecture of MAVMM,
a VMM specially built for malware analysis. By taking
advantage of hardware-support for virtualization [3, 21] and
focusing only on malware analysis functionality, we were
able to keep MAVMM small and simple. The TCB of our
system is 2 to 3 order of magnitude smaller than other
VMM-based malware analysis platforms. Our goals for this
work are:

• Ability to extract useful data for malware analysis.
• Minimum trust in the guest OS.
• Simplicity and compactness for the VMM, which im-

proves transparency and security.
MAVMM works by extracting runtime analysis data,

which we will refer to as features, from the monitored
guest application. The features that we extract from the
guest OS include both fine-grained information and high-
level information: execution traces, memory dumps, system
calls, disk accesses, and network interactions. These features
can then be used by malware analyzers to create a fairly
complete picture of the malware.

While complete undetectability is most likely a
panacea [17], our system is qualitatively more difficult to
detect than simply running analysis tools alongside the
malware or using a commodity virtualization system. In
addition, our experiments show that common methods used
to detect virtualization are ineffective against MAVMM.
Our main contributions can be summarized as follows:

• We propose a more transparent and secure malware
analysis architecture, using a purpose-built VMM and
hardware virtualization support.

• We implement a prototype system, demonstrate that
MAVMM can extract useful data, and that common
VMM detection techniques are ineffective against it.

• We open the source code of our VMM and give
other researchers access to it. Beside malware anal-
ysis, this simple hypervisor with hardware supported
VMM introspection will be useful for auditing, logging
& replaying, and many other purposes. Our code is
accessible at mavmm.sourceforge.net

The remainder of this paper is organized as follows. We
present the general design of MAVMM in Section II and
describe specific implementation details in Section III. In

Section IV, we present the result of our evaluations. We
further examine related works in Section V and conclude
with Section VI.

II. MAVMM DESIGN

To develop our architecture, we study various techniques
for virtualizing the system, extracting analytic features from
the guest and communicating with the analysis platform. In
this section, we present the high level design of MAVMM
and explain our design decisions. Our design is independent
of virtualization platform (AMD SVM/Intel VT) and guest
operating system (OS). We describe implementation related
details, that are specific to AMD SVM and Linux, in
Section III.

Figure 1. Comparison between general purpose VMMs (left hand side)
and MAVMM (right hand side). The TCB is shaded. MAVMM lets most
hardware access requests go through without interception.

A. Hardware Virtualization Technology

Both AMD and Intel currently offer hardware virtualiza-
tion support in their processors, including the mainstream
Intel Core2 Duo and AMD Opteron. Hardware virtualiza-
tion provides faster virtualization performance, and several
features to simplify VMM implementations, and therefore is
a natural choice for MAVMM. For the purpose of malware
analysis, our hypervisor mainly takes advantage of the
following features offered by hardware virtualization [3]:
an additional CPU mode for the hypervisor, nested paging,
address space identifiers (ASID), an IOMMU, and event
interception and injection.

B. Special Purpose Hypervisor

One of our primary goals is to keep the hypervisor thin
and lean, as we believe simplicity will aid transparency
and security. Even though commodity VMMs, such as Xen,
KVM or VMware, use hardware virtualization, their code
bases are still too large and complex for our purpose. All of
them include a general purpose OS inside their TCB, and
implement many virtualization features that are not neces-
sary for malware analysis. Needless to say, this complexity

is a fruitful land for software bugs. A recent study shows
that programs usually contain between 6 and 16 bugs per
1,000 lines of executable code [5], while another puts the
number at 2 to 75 depending on module size [31]. Indeed,
there are known attacks that break VMM sandboxes from the
guest environment, allowing attackers to take control of the
hypervisor and the host OS [37, 38, 39, 47]. This situation is
clearly undesirable in VMM-based malware analysis. Once
the malware has taken control of the hypervisor, it is very
likely that it will find a way to break into the analysis
platform. This observation led us to the most important
design decision in this project: design a new, special purpose
VMM instead of instrumenting a commodity VMM with
malware analysis capabilities. Unlike traditional VMMs,
MAVMM lets the guest interact directly with hardware for
most of its operations. The VMM only makes interception
at a few places, in order to protect its integrity and log the
guest’s behaviors for later analysis. A comparison between
MAVMM and general purpose VMMs is shown in Figure 1.

C. Boot-strapping the Hypervisor

To get an accurate view of the monitored system’s ac-
tivities, MAVMM needs to start earlier and run at a higher
CPU privilege level than the software under analysis. Thus,
we decide to boot MAVMM directly from a boot loader.
Another option is to run our VMM on top of or alongside
a host OS, similar to Xen [4], KVM [20], and VMWare
Workstation [45]. The higher level of abstraction provided
by a host OS would make it easier to bootstrap the VMM,
however we choose to avoid it to keep our platform small
and simple.

D. Protecting Hypervisor Memory

MAVMM uses nested paging to protect its memory from
being tampered by the guest. Nested paging adds an addi-
tional layer to the hardware address translation process. This
process is illustrated in Figure 2. From the perspective of the
guest, guest physical addresses are the same with hardware
addresses of RAM chips. In reality, they are translated
into host physical addresses with assistance from a newly
inserted nested page table (NPT). By setting up the NPT
appropriately, MAVMM can redirect guest requests to access
its memory region, and hide its existence. From this point,
we will refer to this region as the VMM region.

Paging redirection protects MAVMM from memory ac-
cess by the CPU, but it does not protect MAVMM from
direct memory access (DMA). To keep our hypervisor from
being tampered with by external device DMA, we use the
IOMMU offered by hardware virtualization. IOMMU allows
flexible control of each device’s view of the main memory.
This is done by using a translation table, to control the
mapping from device virtual addresses to memory physical
addresses.

E. Feature Extraction

This section describes the information we glean from a
running VM, our techniques for exporting the data, and an
optimization for avoiding logging unnecessary states and
events.

1) Features: It is important that MAVMM can extract
useful data in addition to running the malware safely and
invisibly. We support extraction of the following features
from applications running inside the guest: fine-grained
execution trace, memory page, system call, disk access, and
network access. These features are the fundamental blocks
upon which other analysis functions could be implemented.

An execution trace provides the highest level of detail,
similar to what a run-time debugger can achieve. This
information plays an important role in understanding the
malware’s internal operations. To get the execution trace of
a guest program, we single step through it’s execution and
record each instruction. We do so by virtualizing the TF flag
within rflags register and set it to 1. This would create an
#DB exception, which could be intercepted by MAVMM,
after every guest instruction. We keep some state to learn
whether the guest or our VMM raised the TF flag. #DB
exceptions created by the guest should be forwarded to it,
while the other ones need to be processed transparently.

When intercepting events, such as system calls and
network accesses, MAVMM fetches guest pointers from
memory. These pointers contain guest logical addresses,
and MAVMM needs to translate them into host physical
addresses before accessing the data that they point to. To
translate a guest logical address to the corresponding host
physical address, we duplicate functionality of the segmen-
tation unit and the paging unit in software. Using the guest’s
segmentation and paging structure, MAVMM can translates
a guest logical address to guest physical address. Because
we use an identity map in our nested page table, this guest
physical address and its corresponding host physical address
are the same1. With this translated host physical address,
MAVMM is able to read the data from memory for further
processing.

System calls are the main interface for software to interact
with and make changes to system state. A log of executed
system calls is often good enough to get a rough idea of what
the malware is trying to do. MAVMM provides the ability
to record all system calls that a guest program invokes.

Most malware tries to gain access to network, either
to propagate itself to other hosts (worm), send out stolen
data (spyware), or contact the master for further instructions
(bot). To remain persistent, malware often needs to make
changes to the hard disk. Therefore, network and disk mon-
itoring are crucial features. Using system call interception,
MAVMM can track network accesses and disk accesses as
they happen.

1this is true except for VMM region

Figure 2. Address translation process for a guest OS without nested paging (1), and with nested paging (2).

2) Getting Analysis Data: One challenge that we face
in our design process is how to get the data logged by
MAVMM out of the monitoring system, so that more
analysis could be done upon it. The key problem is that
MAVMM allows the guest to retain direct control of devices,
so accessing I/O safely and invisibly requires careful design.

We have several choices for extracting data from our
analysis platform: use the same hard-disk as the guest OS,
use a separated hard disk, use an USB flash drive, or use
a system port such as the serial port. We decide to avoid
using the same hard disk with the guest system, to minimize
detectability and avoid possible contentions with the guest
OS. We do not want to use guest drivers to perform our
I/O because, if compromised, the guest could alter our
analysis data. This leaves external USB drive and serial port
communication as the preferred methods for extracting data.
For both external drive and serial port, we can use BIOS
services to dump the data out. We can also implement a
simple driver to access serial port devices directly without
using BIOS services.

3) Selective Analysis: We want the hypervisor to be as
efficient and as unobtrusive as possible. Thus, we enable
full analysis capabilities only when necessary. For example,
analysis should be disabled when the guest OS is booting in
clean state. As a result, MAVMM has two operating modes:
compact and full. In compact mode, the hypervisor has
most interceptions disabled and the monitored system runs
without considerable performance overhead. It only keeps
activated a few interceptions that are absolutely necessary
for VMM protection. In full mode, however, MAVMM in-
tercepts and extracts all features mentioned in Section II-E1.

MAVMM can selectively monitor specific processes and
ignores other unimportant ones. This design removes unnec-
essary noises from the log and accelerates overall analysis
process. To monitor selective processes, MAVMM needs to
be notified each time a process switch takes place. It also
needs a mechanism to identify the next process that is going
to be executed. In most modern operating systems, each
process has a separate virtual address space, and a different
paging structure. With support from hardware virtualization,
MAVMM intercepts any attempt to write to the paging

base pointer2. This allows our VMM to take control during
process switches, right before the incoming process get
executed. MAVMM then uses VM introspection [18] to get
the name or process id of the next process, and compare it
with a list of processes that need to be monitored. If the
next process is in this list, MAVMM will enable full mode.

To track sub-processes created by an application under
analysis, MAVMM infers their names using system call
tracing. When a monitored process invokes a system call
(e.g., fork) to create a new process, the newly created process
will be added to the monitoring list. Similar technique has
been demonstrated for tracking processes from a VMM in
Antfarm [24].

III. IMPLEMENTATION

In this section, we discuss specific details related to the
hardware virtualization technology and guest OS that we
have chosen for our prototype implementation. We choose
AMD SVM technology mainly because it offers more pro-
tection, and use Linux because of our familiarity with this
OS. Nevertheless, we believe that our system can support
Intel VT and Windows. We plan to implement this support
in the future.

Initially, we started with TVMM [25], a small virtual
machine monitor built on top of AMD SVM. TVMM was
a good starting point and we reuse most of its header files,
but it was an incomplete system incapable of booting any
real OS. Furthermore, TVMM does not support our analysis
features.

A. Hardware Virtualization Technology

We decide to use the AMD Secure Virtual Machine
(SVM) extensions for MAVMM. Because the memory man-
agement unit (MMU) is on die, AMD engineers are able to
offer more advanced virtualization features than the compa-
rable extensions from Intel. AMD SVM natively supports
nested paging in hardware. It also provides a convenient
mechanism to reserve physical memory from being accessed
by DMA. In addition, AMD offers a simulation environment

2This pointer is stored in the CR3 register

(AMD Simnow) with many debugging supports, which will
be useful for our development and testing.

B. Boot-strapping

We use the GRUB boot loader to start our system. Our
VMM executable is stored in a simplified 32-bit ELF format
readable by GRUB. We used Xen’s mkelf32 utility to build
this simplified ELF image from raw object files. When our
system boots up, GRUB starts in host mode and begins to
load MAVMM. GRUB passes a multiboot info structure to
MAVMM, which defines the memory map, command line
arguments, and any additional parameters that we specified
to GRUB.

Initially, we passed the guest OS image to our VMM
using the module parameter in GRUB configuration file and
tried to execute this image directly from our hypervisor
(similarly to TVMM [25]). This approach requires MAVMM
to initialize the booting environment to a state as expected
by the guest OS, and make sure that it does not overwrite the
guest OS image in memory while doing so. This turned out
to be very complicated so we changed to a different design.
Instead of loading the guest OS directly, MAVMM transfers
control back to a second round of the GRUB boot loader.
This time GRUB will be started in guest mode to prepare the
environment and boot the virtualized guest OS. To do this,
MAVMM sets the initial instruction pointer address of the
guest to 0x7c00, after it has finished setting up appropriate
interceptions and protection mechanisms. 0x7c00 is the
beginning address of the loaded master boot record, which
contains executable code of GRUB boot loader.

C. Protecting Hypervisor Memory

For simplicity, we create a nested page table and fill it
with an identity mapping from guest physical address to
host physical address for all memory pages available in the
system, excluding the pages used by MAVMM itself. When
the guest tries to access this region, a nested page fault (#NP)
exception will be raised by the CPU. MAVMM intercepts
and handles this fault to hide its existence. We virtualize
the VMM region using additional space in an external USB
drive. Whenever the guest tries to access (read from / write
to) a memory location inside this region, MAVMM executes
its request on the additional space provided instead. If guest
tries to query this USB port, our hypervisor will intercept
and return as if there is no device attached to it.

To protect the VMM from being affected by external
device DMA, we use the Device Exclusion Vector (DEV)
feature of AMD SVM. DEV is an early version of IOMMU,
which allows simple memory protection from DMA ac-
cesses. It uses a user-given bitmap to decide which memory
pages are available for external DMA. We simply mark the
VMM region as unavailable, and set one of the DEVBASE
registers to our modified DEV using DEVCTL PCI config-
uration space function block [3].

D. Features Extraction

1) System Call: Linux applications can invoke a system
call in two different ways: by executing the interrupt (int)
0x80 assembly language instruction, or by executing the
sysenter instruction3. Similarly, the kernel can exit from
a system call by executing the iret or the sysexit
assembly language instructions [6].

Linux uses the eax register to pass a system call number
from a user program to the kernel. The user mode process
also finds return code of the system call in the eax register.
AMD SVM allows software interrupt INTn and IRET in-
structions in the guest to be intercepted using control bits in
the Virtual Machine Control Block (VMCB) [3]. During a
software interrupt interception, the hypervisor first checks if
the instruction is int 0x80. AMD SVM allows us to intercept
all software interrupts, but does not provide information
on which specific vector number was called at the point
of interception. To test whether vector 0x80 was invoked,
we fetch current instruction’s opcode from the guest by
walking through it’s paging table in software. If it is indeed
0x80, our hypervisor reads the system call number from eax
register and process it accordingly. The intercepted software
interrupt is then injected into the guest before MAVMM
passes control back to it.

For some system calls, such as sys read, useful data is
presented only after the handler had finished its execution.
To get the data that was actually read from disk, we need to
intercept sys read return using IRET interception. We also
need to maintain a mapping from the id of the thread which
invoked a system call to the system call that it executed. For
sys read, this is the pointer to the buffer where its ouput will
be stored. This mapping is added when MAVMM intercepts
int 0x80 instructions. When an IRET takes place, MAVMM
uses VMM introspection to get the ID of current thread.
It then looks up information about the system call that this
thread invoked. If it is a sys read, data located at the receive
buffer along with the returned buffer size will be logged.

In cases where both the CPU and Linux kernel can support
sysenter/sysexit instruction, the libc wrapper function may
use them to invoke system calls, as they are faster than
INT and IRET. Intercepting sysenter/sysexit is a bit more
complicated since it is not directly supported by ADM SVM.
However, we can use a technique similar to Ether [10] for
this task. We modify the index in SYSENTER CS MSR
to point to some unmapped segment, storing its original
value in a safe place. Each time sysenter is called, the CPU
will transfer control to this segment and create a #GP fault.
MAVMM intercepts this fault to get system call number and
other arguments, then passes control back to the guest using
original SYSENTER CS MSR value, as if no interception
has occurred.

3sysenter is a recent addition and is only supported in 2.6 series Linux
kernels

2) Network & File Access: In Linux, all network accesses
are carried out by invoking sys socketcall, which takes two
parameters: func indicating which network system call to ex-
ecute, and args - an array of pointers to different parameters
associated with func. When sys socketcall is intercepted, the
value of func and args are located at CPU register ebx, and
ecx accordingly. We can get the IP address as well as the
port number of the host to which the guest is communicating
with by looking at the sockaddr in structure specified in
args. For each network access, MAVMM records the IP
addresses, port numbers, and data involved.

File accesses can be monitored in a similar fashion
through tracking of sys read and sys write system calls. To
facilitate analysis, we maintain a mapping from descriptor
numbers of opened files to their pathnames. We update this
map when intercepting returns of sys open and sys close.

3) Getting Analysis Data: Given that we can use Simnow
to bind a virtual serial port in the simulator to a real port on
the hosting system, we currently use a serial port for sending
out analysis data. Though it has low bandwidth, it serves as
a proof-of-concept for our ideas. A similar device hiding and
I/O access mechanism could be used for an external USB
drive.

4) Selective Analysis: We implemented the MAVMM
user control interface using a guest program and VMM-
CALL instructions. Our program, mavmm-u, running inside
the guest makes VMMCALLs to communicate with the
hypervisor. We use this program to take fine-grained control
of our tracking features, switching between compact mode
and full mode, and specifying the names of processes that
we want to track. Although mavmm-u is run inside the guest,
we can remove the binary file and evidences of its existence
before executing the malware.

To track sub-processes, we intercept Linux’s execve sys-
tem call, which is the backend of exec family of functions.
We get the name of the newly created processes from
execve’s arguments and keep a list of all processes that we
want to track. This way we can track execution of sub-
processes that are created by the malicious application.

E. Transparent Event Forwarding

The main role of MAVMM is to log actions executed
by the guest running on top of it. For most of the time,
MAVMM intercepts an event, log it, and then forward it
to the guest as if no interception has occurred. Hardware
virtualization offers support for forwarding some types of
events, such as interrupt and exception. But the range of
events that MAVMM needs to intercept is broader than
that. For example, MAVMM intercepts IRET instruction
and modification of CR3 to track system call return value
and process switch accordingly. Since forwading of those
two events is not supported, it would be very complex if
MAVMM tries to simulate those events by itself. To get
around this, we implement a transparent event forwarding

(1)

******* GUEST STATE *********
cs:ip = 0x73:0xb7ed3b8c
ss:sp = 0x7b:0xbfdc3c84
ds:bp = 0x7b:0xbfdc3ca0
eax = 0x4, ebx = 0x0, ecx = 0x1, edx = 0xb7f52000
esi = 0xd, edi = 0xb7f52000cpl=0x3
cr0=0x8005003b, cr3=0x0, cr4=0xf1fc000
rflags=0x346, efer=0x0
4 bytes opcode: 0xcd 0x80 0x5b 0x3d
>> write(filename: stdout, size: 0xd, content
written [Hello world!])
>> syscall return: 0xd

******* GUEST STATE *********
...

(2)
>> unlink(Filename: /etc/passwd˜)
>> link(Old Filename: /etc/passwd, New Filename:
/etc/passwd˜)
>> unlink(Filename: /etc/passwd)
>> link(Old Filename: /etc/ptmp, New Filename:
/etc/passwd)
>> unlink(Filename: /etc/ptmp)

Figure 3. MAVMM logs: (1) Trace of a simple program, high
level system calls are combined with fine-grained execution trace. (2)
Rootkit.Linux.Agent.30.Chsh replaces /etc/passwd through a combination
of link and unlink system calls

mechanism using the single stepping TF flag in rflags regis-
ter. When IRET or CR3 modification takes place, MAVMM
logs the event, disables interception for that particular event,
and then sets TF flag to 1 before returning control to the
guest. This way, the guest will receive the event without
any alteration. Right after the guest processes this event, a
#DB single stepping exception will be raised and control is
passed back to MAVMM. This time, MAVMM resets TF and
enable interception for the event again. This technique works
well for most interceptions except interrupt and exception,
because the CPU will reset TF flag at the beginning and
restore it at the end of those two events. As a result,
#DB exception will not be raised after the first instruction
within the interrupt or exception handler, and MAVMM will
not be able to reestablish its interception immediately as
expected. Fortunately, forwarding of those two events is
already supported by hardware virtualization.

IV. EVALUATION

We have evaluated MAVMM in three aspects: functional-
ity, detectability, and performance. We executed our experi-
ments inside the AMD Simnow simulator, which simulates
a machine with 900Mhz processor and 256MB of RAM. We
ran Simnow on a 2.40GHz Intel(R) Core(TM)2 CPU with
2.5GB of RAM, on top ofx86 64 Ubuntu Linux 8.04, kernel
version 2.6.24-24.

A. Functionality

1) Fine-grained tracking: MAVMM has the ability to
extract very fine-grained information regarding the program
under analysis. It can intercept every guest instruction, fetch
and display the opcode, CPU registers and other states. This

Detection Technique VMWare Virtual PC Xen PV Xen HVM MAVMM
Red Pill (IDT Check) Detected Detected Detected Not Detected Not Detected
LDT Check Detected Detected Detected Not Detected Not Detected
VMWare I/O Channel Detected Not Detected Not Detected Not Detected Not Detected
Virtual PC Special Inst. Not Detected Detected Not Detected Not Detected Not Detected
MSW Check Detected Not Detected Not Detected Not Detected Not Detected
Xen CPUID Check Not Detected Not Detected Detected Detected Not Detected

Table I
EFFECTIVENESS OF VMM DETECTION TECHNIQUES ON VARIOUS HYPERVISORS

is equivalent to the amount of information we can get from
a runtime debugger. However, MAVMM offers much better
transparency and protection since it operates totally outside
the guest. Figure 3-(1) shows a portion of the execution trace
when we monitor a simple “Hello world” program. This
information can be forwarded to a dissasember for further
analysis, or it can be combined with high-level data such as
system call traces, to give a clearer picture of the malware
as shown in the figure. With fine-grained tracking capability,
MAVMM can also be used as a universal unpacker, similar
to Ether [10]. The idea is simple: track all memory addresses
to which the monitored guest program writes, and raise an
alert when it tries to execute dynamically generated code.

2) High-level tracking: To test high-level extraction ca-
pability of MAVMM, we monitored the booting process of
tty Linux 8.0. During this process, MAVMM intercepted a
total of 21953 system calls. Among those system calls 126
are execve; they were called to execute binary programs such
as hotplug, chmod, cat, date, stty, mount and ifconfig. Other
system calls that we recorded include read, write, mmap2,
ioctl, open and close.

We also reverse-engineered a simple malware to show
how our system would work in practice. In order to to this,
we downloaded nearly 67000 malware from VXNetlux [2]
and used the latest version of ClamAV [1] to remove known
samples. Among the remaining ones, we selected a malware
named ’Rootkit.Linux.Agent.30.Chsh’ due to its small size
of roughly 138KB. We enabled system call tracking for
this specific process and ran it inside MAVMM with tty
Linux 8.0 as our guest OS. We will describe our findings
here briefly. The full log can be found at our project
page: sourceforge.net/projects/mavmm/files/. By looking at
its output messages, we suspect that this rootkit will replace
root’s shell with a malicious shell so that it gets executed
everytime root account logins. But we do not know what
the malware actually does or how it achieves its goal. As
it turns out, this rootkit tries to change the content of
/etc/passwd. Further analysis reveals that the malware does
not modify /etc/passwd directly; it creates and operates on
a temporary copy at /etc/ptmp instead. This is perhaps to
prevent possible errors in the process from destroying the
original file, and creating undesired suspicion. After the
shell has been changed, the original /etc/passwd is copied

to /etc/passwd∼ and then get replaced by the modified
/etc/ptmp. Those actions are performed using link and unlink
system calls, as shown in Figure 3-(2).

B. Detectability & Security

We evaluated MAVMM against well-known VMM detec-
tion techniques and compared the result with other VMMs
such as VMWare, Virtual PC and Xen. The first detection
techniques we tested is Red Pill [34]. The idea behind it is
very simple: use a sensitive but non-privileged instruction to
expose a VMM artifact. Hypervisors such as VMWare and
Virtual PC virtualize and relocate the guest interrupt descrip-
tor table (IDT) to a high memory address. Red Pill checks
the address stored in IDTR by using the SIDT instruction.
If the address stored in IDTR is higher than a certain value,
Red Pill concludes that it is running in guest mode, inside
a VMM. MAVMM, on the other hand, does not need to
modify the IDT table or change value of guest’s IDTR,
and thus Red Pill is not able to detect MAVMM. Quist
and Smith [42] proposed a similar idea, which checks the
value of local descriptor table register. We implemented this
detection and verified that it is able to detect several other
VMMs, but fails to detect MAVMM. We also experimented
with some VMM specific detection techniques. For example,
VMWare use a special IO port to communicate with the
guest. By testing whether this communication is possible,
an attacker can detect the presence of VMWare [29]. Virtual
PC can also be detected in a similar way [29]. Xen provides
modified software MMU architecture, which extends the
CPU to improve performance. Therefore Xen, both para-
virtualized and hardware-supported versions, can be detected
by checking Xen CPUID extensions [16]. It is obvious
that MAVMM cannot be detected using these techniques.
Finally, we tested MAVMM with the machine state word
(MSW) detection technique [41]. This technique can detect
fully virtualized VMWare, which cannot be detected by
IDT check. The results of our experiments are shown in
Table I. As we can see, MAVMM is not susceptible to any
of these mechanisms while VMWare, Virtual PC and Xen
were susceptible to some of them.

Even though implemented instances of the TLB profiling
attack [35] cannot detect MAVMM, we think that the general
idea behind it deserves more discussion. In a virtualized
environment, both the VMM and the guest compete for the

same set of TLB entries. The guest could execute several
different types of TLB profiling. One method is to fill all
TBL entries, then measure how long it would take to access
memory in two different runs: before entering to and after
exiting from the hypervisor. If some of the entries filled by
the guest get replaced by the VMM, the second run will
experience cache misses and take longer to execute [17].
In all scenarios, the guest has to create a #VMEXIT so
that hypervisor mode is entered. To achieve higher detection
accuracy, this event should not be intercepted by the guest
OS, i.e. it is not privileged, otherwise it would be unclear
wether the guest OS or the hypervisor caused the timing
disparity. Since MAVMM does not support multiple guest
VM instances and virtual device emulation, it has no need to
virtualize non-privilege instructions such as SIDT or SLDT.
It should be much more difficult, if not impossible, to
detect MAVMM using TLB profiling attack. Furthermore,
MAVMM occupies a much smaller code region than general
purpose VMMs, and therefore it will overwrite fewer TLB
entries, making this attack more error-prone.

Nevertheless, complete undetectability is like a panacea.
We speculate that a carefully implemented and specially
targeted external timing attack [14] can be used to detect
all VMMs, including our hypervisor. However, such attacks
are very complex and expensive. It requires root privilege,
a huge amount of CPU cycles, an external timing source
and some prior knowledge about the target system. This
goes directly against common malware’s incentive to be
stealthy and remains undetected for a longer period of time
and therefore is unlikely to get implemented in practice.
Additionally, the growing usage of VMMs in general pur-
pose operating systems, such as the upcoming version of
Windows Server, will make VMM detection irrelevant. This
will force attackers to instead focus on the more difficult
problem of analyzer detection.

The size of trusted computing base is an important factor
to consider when evaluating a system’s security. Simplicity
makes it easier to avoid bugs, and to formally verify desired
properties of the system. Our current implementation con-
sists of 182 lines of assembly and 3913 lines of C code
for the hypervisor, and 75 lines of C code for the user
control interface. After compiled, the MAVMM hypervisor
is only 124KB. Our code base is 3 to 4 order of magnitude
smaller than commodity VMMs such as Xen or VMWare
Workstation, which contain a host OS with millions of lines
of code inside their TCB.

C. Performance Overhead

Even though performance overhead is not our main con-
cern, we want make sure that it can be kept reasonable.
We evaluated the performance of MAVMM by measuring
execution time of different types of programs inside (in both
compact mode and full mode), and outside our hypervisor.
We ran each program five times and show the average of all

Figure 4. MAVMM performance overhead. Each group has three bars. First
bar is execution time when MAVMM is disabled, second bar with MAVMM
in compact mode, last bar with MAVMM in full mode, the upper portion
of this bar is additional delay incurred by serial port communications

runs in Figure 4. First, we ran two I/O intensive programs,
one reads (read) and the other writes (write) one million
bytes to the disk. Then we executed another program that
makes 1000 getpid() system calls and print out the result
to the screen (syscall). Lastly, we ran a CPU intensive
program that execute one million add instructions (cpu).
As we expected, the last program does not experience any
performance penalty since all executed operations are non-
privilege. The result shows that MAVMM, when running
in compact mode, induces very negligible overhead: 0% for
read and cpu, 2.3% for write and 3.1% for syscall. However,
the extra cost in full mode is much more significant: 46.5%,
100%, and 78.1% for write, read and syscall respectively.
Further investigation reveals the main source of overhead is
the serial port communication. Our current implementation
simply dumps all logged data to COM1. This step takes
up 70% to 77.8% of the three additional delays mentioned
above. This expense will be reduced significantly when
we switch to usb logging and batch data dumps rather
than writing them as they happen. Since we have not tried
to optimize our code our code heavily, we believe that
aggressive optimization, such as using local caching, will
achieve even better performance.

V. RELATED WORKS

A significant motivation for our project is prior works on
malware analysis in non-virtualized environment, including
in-guest debugger [48] and dissasembler [36]. Those tech-
niques, however, can be avoided through various number of
methods such as packing/encryption, code obfuscation [43],
and debugger detection [19]. More advanced systems include
OS based platforms such as Saffron [43], and emulator
based analyzers such as Renovo [26]. Saffron uses dynamic
instrumentation and a newly developed page fault assisted
debugger, while Renovo and BitBlaze [44] ultilize whole-

system emulation. However, they only provide a way to
debug / unpack malware whereas MAVMM offers a more
complete analysis platform. Moreover, non-virtualized an-
alyzers are very likely to create detectable side effects,
especially when they operate under the the assumption that
the guest OS can be compromised. Our goals of minimal
detectability and no trust on the guest, including guest OS,
cannot be accomplished in this environment.

Virtualization offers a strong protection through isolation,
and the ability to save and rollback guest state to aid live
debugging. VM introspection, the process of examining
a process inside a virtual machine from its VMM, was
introduced by Garfinkle and Rosenblum [18]. While other
works have leveraged this idea for security purposes, such as
process tracking [24], intrusion detection [28, 46], malware
detection [22], and honeypots [30, 23, 32], our work focuses
on harware-supported introspection for malware analysis.

Because virtual machines have been used commonly by
malware analyzers, virtualization detection techniques have
become a part of modern malware. The techniques that
malware program use range from a simple IDT based
detection [34] to complicated TLB sizing or timing attacks
[17, 13]. These results show that any software virtualization
platform will introduce some detectable changes to the guest
system. We, therefore, utilize the hardware virtualization
support to achieve our goal of minimal detectability. Since
it is known to be harder to detect hardware virtualization,
malware is unlikely to go to great length to detect and avoid
hardware virtualization platform if by doing so exposes itself
to malware detectors.

Several researches are utilizing hardware virtualization.
KVM [20] uses kernel modules to create a hypervisor on
top of Linux, but it is based on QEMU’s I/O model which is
known to be detectable [33, 13]. A recent work by Dinaburg
et al, Ether [10], is perhaps the project most closely related
to ours. Ether make use of Xen HVM and its support for
Intel VT hardware virtualization technology for malware
analysis. Intel VT, however, does not support nested paging
and DMA protection. This is the reason why we decided to
use AMD SVM instead of Intel VT. The usage of Xen makes
it much easier to develop Ether, since the analyzer does not
have to worry about boot-strapping itself and the guest OS,
protecting its integrity, or retrieving analysis data, etc... But
this benefit comes at the cost of having a huge TCB. Ether’s
trusted computing base includes Xen and an additional
domain0 OS with many unnecessary functionalities. As we
have argued throughout this paper, general purpose VMMs
are not appropriate for malware analysis. We on the other
hand, use a lightweight and customized VMM which is
specially designed for this purpose.

Another interesting line of works uses a thin layer of
hypervisor to enforce guest security policies [40], to help
reducing the TCB size of guest applications [15], or to
implement a low level rootkit and hide its malicious be-

haviours [35]. Our work also focuses on separating func-
tionalities and keeping TCB at minimum, but we target
a different application which presents a different set of
technical challenges.

VI. CONCLUSION

In this paper, we proposed MAVMM, a lightweight VMM
designed specially for malware analysis. MAVMM does
not implement unnecessary virtualization features commonly
found in general purpose hypervisors. Hardware virtualiza-
tion support offers MAVMM simplicity, security and trans-
parency. We proved that our system can extract useful infor-
mation, and that it is not susceptible to known virtualization
detection techniques. Thus, it can achieve higher accuracy
than current state-of-the-art malware analysis platforms.

Another important goal that we started with was to
provide the research community with a simple and easy-to-
enhance hardware-supported virtualization framework. This
framework could be useful for prototyping new functional-
ity below OS level. Such services include OS debugging,
security auditing, logging, and replaying, etc. By being
simple (around 4000 lines of code) and well documented
(even larger amount of comments), MAVMM makes it
easy for other researchers to add new functions to it, or
modify it to serve their purposes. Our implementation of
MAVMM and updates on our project can be found at
mavmm.sourceforge.net

ACKNOWLEDGMENT

We would like to acknowledge Professor Carl A. Gunter
for his thoughtful suggestions during the early stage of this
project. This work was funded by a grant from the Internet
Services Research Center (ISRC) of Microsoft Research,
by NSF grant CT-0716768, and by AFOSR MURI grant
FA9550-09-01-0539. Anh Nguyen was funded in part by a
grant from the Vietnam Education Foundation (VEF). The
opinions, findings, and conclusions stated herein are those
of the authors and do not necessarily reflect those of the
sponsors.

REFERENCES

[1] Clam antivirus. http://www.clamav.net/.
[2] Vx heavens. http://vx.netlux.org/.
[3] Advanced Micro Devices. AMD64 Architecture Program-

mer’s Manual Volume 2: System Programming, 3.14 edition,
Sep 2007.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art
of virtualization. In ACM Symposium on Operating Systems
Principles, 2003.

[5] V. Basili and B. T. Perricone. Software errors and complexity:
an empirical investigation, 1993.

[6] D. P. Bovet and M. Cesati. Understanding the linux kernel.
Number ISBN : 0-596-00213-0. O’Reilly, décembre 2003.

[7] E. Chickowski. Webroot: 40 percent of companies report
disruptions due to malware. SC Magazine, Mar 2007.

[8] G. Combs. Wireshark 1.0.6: A Network Protocol Analyzer
for Windows and Unix. http://www.wireshark.org/.

[9] W. Davis. Adware Firms Up The Ante On Anti-Spyware.
Online Media Daily, Mar 2005.

[10] A. Dinaburg, P. Royal, M. I. Sharif, and W. Lee. Ether:
malware analysis via hardware virtualization extensions. In
ACM Conference on Computer and Communications Security,
2008.

[11] C. Economics. 2007 Malware Report: The Economic Impact
of Viruses, Spyware, Adware, Botnests and Other Malicious
Code. Tech. Rep., Jun 2007.

[12] F-Secure. Agobot virus description. www.f-secure.com/
v-descs/agobot.shtml.

[13] P. Ferrie. Attacks on virtual machine emulators, Jan 2007.
[14] J. Franklin, M. Luk, J. M. McCune, A. Seshadri, A. Perrig,

and L. V. Doorn. Remote detection of virtual machine
monitors with fuzzy benchmarking. ACM SIGOPS Operat-
ing System Review Special Edition on Computer Forensics,
42(3):83–92, Apr 2008.

[15] M. Franz. Information-flow aware virtual machines: Founda-
tions for trustworthy computing. Conference For Homeland
Security, Cybersecurity Applications and Technology, 0:91–
96, 2009.

[16] K. Fraser. x86: Update xen-detect utility to scan for Xen
signature in CPUID space, Dec 2008. xen-unstable mailing
list.

[17] T. Garfinkel, K. Adams, A. Warfield, and J. Franklin. Com-
patibility is Not Transparency: VMM Detection Myths and
Realities. In Usenix Workshop on Hot Topics in Operating
Systems (HotOS-XI), May 2007.

[18] T. Garfinkel and M. Rosenblum. A Virtual Machine Intro-
spection Based Architecture for Intrusion Detection. In ISOC
Network and Distributed Systems Security Symposium, Feb
2003.

[19] T. Holz and F. Raynal. Detecting honeypots and other sus-
picious environments. IEEE Systems, Man and Cybernetics
(SMC) Information Assurance Workshop, 2005.

[20] Q. Inc. KVM - Kernel-based Virtualiztion Machine.
[21] Intel. Intel 64 and IA-32 Architectures Software Developer’s

Manual Volume 3B: System Programming Guide, Mar 2009.
[22] X. Jiang, X. Wang, and D. Xu. Stealthy malware detection

through vmm-based ”out-of-the-box” semantic view recon-
struction. In ACM conference on Computer and communica-
tions security, 2007.

[23] X. Jiang, D. Xu, H. Wang, and E. Spafford. Virtual play-
grounds for worm behavior investigation. In International
Symposium on Recent Advances in Intrusion Detection, 2005.

[24] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Antfarm: tracking processes in a virtual machine environment.
In USENIX Annual Technical Conference, 2006.

[25] K. Kaneda. Tiny Virtual Machine Monitor. http://web.yl.is.s.
u-tokyo.ac.jp/∼kaneda/tvmm/.

[26] M. G. Kang, P. Poosankam, and H. Yin. Renovo: A Hidden
Code Extractor for Packed Executables. In ACM Workshop
on Recurring Malcode (WORM’7), October 2007.

[27] S. King and P. Chen. Subvirt: Implementing malware with
virtual machines. IEEE Symposium on Security and Privacy,
May 2006.

[28] K. Kourai and S. Chiba. Hyperspector: virtual distributed
monitoring environments for secure intrusion detection. In
ACM/USENIX international conference on Virtual Execution
Environments, 2005.

[29] T. Liston and E. Skoudis. On the cutting edge: Thwarting
virtual machine detection, Jul 2006.

[30] Y. min Wang, Y. min Wang, D. Beck, D. Beck, X. Jiang,
X. Jiang, R. Roussev, and R. Roussev. Automated web patrol
with strider honeymonkeys: Finding web sites that exploit
browser vulnerabilities. In NDSS, 2006.

[31] T. J. Ostrand and E. J. Weyuker. The distribution of faults
in a large industrial software system. In ACM SIGSOFT
international symposium on Software testing and analysis,
2002.

[32] N. Provos and T. Holz. Virtual honeypots: from botnet
tracking to intrusion detection. Addison-Wesley Professional,
2007.

[33] T. Raffetseder, C. Krügel, and E. Kirda. Detecting system
emulators. In ISC, 2007.

[34] J. Rutkowska. Red Pill... or how to detect VMM using
(almost) one CPU instruction. http://www.invisiblethings.org/
papers/redpill.html.

[35] J. Rutkowska and A. Tereshkin. IsGameOver() Anyone?, May
2007. http://bluepillproject.org/stuff/IsGameOver.ppt.

[36] D. SA/NV. IDA Pro Disassembler and Debugger. http://www.
hex-rays.com/idapro/.

[37] Secunia. Vulnerability Report: VMware ESX Server 3.x. http:
//secunia.com/advisories/product/10757/.

[38] Secunia. Vulnerability Report: VMware Workstation 6.x. http:
//secunia.com/advisories/product/10757/.

[39] Secunia. Vulnerability Report: Xen 3.x. http://secunia.com/
advisories/product/15863.

[40] A. Seshadri, M. Luk, N. Qu, and A. Perrig. Secvisor: a
tiny hypervisor to provide lifetime kernel code integrity for
commodity oses. In SOSP ’07, 2007.

[41] V. Smith and D. Quist. Further Down the VM Spiral, Aug
2006. www.offensivecomputing.net/dc14/furthur down the
vm spiral.pdf.

[42] V. Smith and D. Quist. Hacking Malware: Offense is the new
Defense. Defcon, 14, Aug 2006.

[43] V. Smith and D. Quist. Covert Debugging: Circumventing
Software Armoring. Blackhat Las Vegas, Aug 2007.

[44] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G.
Kang, Z. Liang, J. Newsome, P. Poosankam, and P. Saxena.
BitBlaze: A new approach to computer security via binary
analysis. In International Conference on Information Systems
Security, Dec 2008.

[45] J. Sugerman, G. Venkitachalam, and B.-H. Lim. Virtualiz-
ing I/O Devices on VMware Workstation’s Hosted Virtual
Machine Monitor. In USENIX Annual Technical Conference,
2001.

[46] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. C.
Snoeren, G. M. Voelker, and S. Savage. Scalability, fidelity,
and containment in the potemkin virtual honeyfarm. SIGOPS
Oper. Syst. Rev., 39(5):148–162, 2005.

[47] R. Wojtczuk. Adventures with a certain Xen vulnerability(in
the PVFB backend), Oct 2008.

[48] O. Yuschuk. Ollydbg. http://www.ollydbg.de/.
[49] B. Zdrnja. E-cards dont́ like virtual environments, Jul 2007.

http://isc.sans.org/diary.html?storyid=3190.
[50] B. Zdrnja. More tricks from Conficker and VM detection,

Feb 2009. http://isc.sans.org/diary.html?storyid=5842.
[51] L. Zeltser. Using VMware for Malware Analysis. SearchSe-

curity.com, May 2007.

