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Abstract—Current web browsers are plagued with vulnerabil-
ities, providing hackers with easy access to computer systems
via browser-based attacks. Browser security efforts that retrofit
existing browsers have had limited success because the design of
modern browsers is fundamentally flawed. To enable more secure
web browsing, we design and implement a new browser, called
the OP web browser, that attempts to improve the state-of-the-art
in browser security. Our overall design approach is to combine
operating system design principles with formal methods to design
a more secure web browser by drawing on the expertise of both
communities. Our overall design philosophy is to partition the
browser into smaller subsystems and make all communication
between subsystems simple and explicit. At the core of our design
is a small browser kernel that manages the browser subsystems
and interposes on all communications between them to enforce
our new browser security features.

To show the utility of our browser architecture, we design and
implement three novel security features. First, we develop novel
and flexible security policies that allows us to include plugins
within our security framework. Our policy removes the burden
of security from plugin writers, and gives plugins the flexibility
to use innovative network architectures to deliver content while
still maintaining the confidentiality and integrity of our browser,
even if attackers compromise the plugin. Second, we use formal
methods to prove that the address bar displayed within our
browser user interface always shows the correct address for the
current web page. Third, we design and implement a browser-
level information-flow tracking system to enable post-mortem
analysis of browser-based attacks. If an attacker is able to
compromise our browser, we highlight the subset of total activity
that is causally related to the attack, thus allowing users and
system administrators to determine easily which web site lead to
the compromise and to assess the damage of a successful attack.

To evaluate our design, we implemented OP and tested
both performance and filesystem impact. To test performance,
we measure latency to verify OP’s performance penalty from
security features are be minimal from a users perspective. Our
experiments show that on average the speed of the OP browser is
comparable to Firefox and the audit log occupies around 80KB
per page on average.

I. INTRODUCTION

Current web browsers provide attackers with easy access
to modern computer systems. According to a recent report by
Symantec [48], over the last year Internet Explorer had 93 se-
curity vulnerabilities, Mozilla browsers had 74 vulnerabilities,
Safari had 29 vulnerabilities, and Opera had 9 vulnerabilities.
In addition to these browser bugs, there were also 301 reported
vulnerabilities in browser plugins over the same period of
time including high-profile bugs in the Java virtual machine
[10], the Adobe PDF reader [38], the Adobe flash player [8],
and Apple’s QuickTime [39]. Unfortunately, attackers actively

exploit these bugs according to several recent reports [50],
[36], [41], [48].

The flawed design and architecture of current web browsers
make this trend of exploitation likely to continue. Modern web
browser design still has roots in the original model of browser
usage where users viewed several different static pages and
the browser itself was the application. However, recent web
browsers have evolved into a platform for hosting web-based
applications, where each distinct page (or set of pages) repre-
sents a logically different application, such as an email client, a
calender program, an office application, a video client, a news
aggregate, etc. The single-application model provides little
isolation or security between these distinct applications hosted
within the same browser, or between different applications
aggregated on the same web page. A compromise occurring
on any part of the browser, including plugins, results in a total
compromise of all web-based applications running within the
browser.

Efforts to provide security in this evolved model of web
browsing have had limited success. The same origin1 policy –
which states that scripts and objects from one domain should
only be able to access other scripts and objects from the same
domain – is one security policy most browsers try to imple-
ment. However, different browsers have varying interpretations
of the same-origin policy [24], and the implementation of this
principle tends to be error prone due to the complexity of
modern browsers [12]. Furthermore, the same-origin policy is
too restrictive for use with browser plugins and as a result
browser plugin writers have been forced to implement their
own ad-hoc security policies [7], [47], [35]. Plugin security
policies can contradict a browsers overall security policy, and
create a configuration nightmare for users since they have to
manage each plugin’s security settings independently.

Current research efforts to retrofit today’s web browsers
help to improve security, but fail to address the fundamental
design flaws of current web browsers. One project, MashupOS
[49], proposes new abstractions to facilitate improved sharing
among multiple principles hosted in the same web page.
Another project, Script Accenting [12], encrypts scripts from
different domains to improve enforcement of the same-origin
policy. Both provide scripts with fine-grain isolation within
the same web page. However, these mechanisms both run
within current web browsers (Internet Explorer) and are only
as secure as the browser they run within, which currently

1An origin is defined as the domain, port, and protocol of a request.
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is not very secure. Sandboxing systems, such as Tahoma
[17], prevent browsers from making persistent changes to the
system and isolate distinct web-based applications using a
virtual machine monitor (VMM). This type of persistent-state
restriction can be problematic if users legitimately want to
store persistent state and allowing users to store and execute
downloaded files gives attackers an avenue into the system.
Plus, sandboxing at the web-application level can be too coarse
grained since it fails to isolate different scripts and objects
within the same web application. Combining current fine-
grained isolation techniques with sandboxing systems does not
provide a complete solution since it would still rely heavily
on the underlying browser itself.

This paper describes the design and implementation of the
OP2 web browser that attempts to address the shortcomings of
current web browsers to enable secure web browsing. In our
design we break the browser into several distinct and isolated
components, and we make all interactions between these
components explicit. At the heart of our design is a browser
kernel that manages each of our components and interposes
on communications between them. This model provides a
clean separation between the implementation of the browser
components and the security of the browser, and it allows us
to provide strong isolation guarantees and to implement novel
security features.

To show the utility of our browser architecture, we design
and implement three novel security features. First, we develop
a novel and flexible security policies that allows us to include
plugins within our security framework. Our policy removes
the burden of security from plugin writers, and gives plugins
the flexibility to use innovative network architectures to deliver
content while still maintaining the confidentiality and integrity
of our browser, even if attackers compromise the plugin.
Second, we use formal methods to prove that the address bar
displayed within our browser user interface always shows the
correct address for the current web page. Third, we design and
implement a browser-level information-flow tracking system to
enable post-mortem analysis of browser-based attacks. If an
attacker is able to compromise our browser, we highlight the
subset of total activity that is causally related to the attack,
thus allowing users and system administrators to determine
easily which web site lead to the compromise and to assess
the damage of a successful attack.

To the best of our knowledge, the contributions of this paper
are as follows:

• We present the design and implementation of a new
browser architecture that facilitates the development of
novel and flexible browser-level security policies.

• We are the first to enforce plugin security policies explic-
itly from the browser, and we are the first to cope with
compromised plugins while still maintaining a high-level
of overall browser security.

• We show how operating system principles can be com-

2OP comes from Opus Palladianum, which is one technique used in mosaic
construction where pieces are cut into irregular fitting shapes.

bined with formal methods as a practical methodology
for browser design and implementation.

• We are the first to develop techniques for performing
post-mortem analysis of browser-based attacks.

II. THE OP BROWSER DESIGN AND IMPLEMENTATION

This paper describes the design and implementation of the
OP web browser that improves the security of web browsing;
we have three primary goals. First, we should prevent browser-
based attacks from happening. Next, although we hope to
prevent many attacks, inevitably our browser will contain
vulnerabilities so we should contain these attacks and limit
the damage that can be done by a successful compromise.
Finally, even if we prevent some attacks and contain others,
attackers may be able to cause damage to infected systems,
so we should provide the ability to recover from successful
attacks.

In this section we describe the design of our OP web
browser that attempts to achieve these goals. First we discuss
our threat model and the principles that guide our design, then
we discuss our overall architecture, and finally we describe the
individual components that make up our browser. In Sections
III, IV, and V we describe in detail the specific security
features we implement within our browser that illustrate our
ability to achieve our overall security goals.

A. Threat model and assumptions
We designed the OP web browser to operate under malicious

influence. We consider attacks that originate from a web page
and could potentially target any part of the browser. We assume
that the attacker could have complete control over the content
being served to the web browser. A browser compromise could
be any sort of attack provided in this way; an attack that results
in code execution is the most capable form of attack.

We trust the layers upon which OP is built. Namely, we
trust the underlying operating system and Java virtual machine
(JVM) to enforce isolation for our subsystems. Like other
current browsers we trust DNS names for labeling our security
contexts. If an attacker compromises any of these entities the
security of our browser is at risk.

B. Design principles
Overall we embrace both operating system design principles

and formal methods techniques in our design. By drawing on
the expertise from both communities we hope to converge on
a better and more secure design. Four key principles guide the
design for our web browser:

1) Simple and explicit communication between components.
Clean separation between functionality and security
with explicit interfaces between components reduces the
number of paths that can be taken to carry out an action.
This makes reasoning about correctness, both manually
and automatically, much easier.

2) Strong isolation between distinct browser-level com-
ponents and defense-in-depth. Providing isolation be-
tween browser-level components reduces the likelihood
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Subsystem File system access Network access
UI allowed denied
Web page denied denied
Storage limited denied
Network denied allowed
Browser kernel allowed allowed

TABLE I
SUMMARY OF OS-LEVEL SANDBOXING FOR EACH OP SUBSYSTEM.

of unanticipated and unaudited interactions, and allows
us to make stronger claims about general security and
the specific policies we implement.

3) Design components to do the proper thing, but monitor
them to ensure they adhere to the design. Delegating
some of the security logic to individual components
makes the browser kernel simpler while still providing
enough information to verify that the components faith-
fully execute their design.

4) Maintain compatibility with current technologies. We try
to avoid imposing additional burdens on users or web
application developers, our goal is to make the current
browsing experience more secure.

C. OP browser architecture

Figure 1a shows the overall architecture of OP. Our browser
consists of five main subsystems: the web page subsystem,
a network component, a storage component, a user-interface
(UI) component, and a browser kernel. Each of these sub-
systems run within separate OS-level processes, and the web
page subsystem is broken into several different processes.
The browser kernel manages the communication between each
subsystem and between processes, and the browser kernel
manages interactions with the underlying operating system.

We use a message passing interface to support communica-
tions between all processes and subsystems (see the Appendix
for a listing of all messages). These messages have a semantic
meaning (e.g., fetch an HTML document) and are the sole
means of communication between different subsystems within
our browser. They must pass through the browser kernel, and
the browser kernel implements our access control mechanism
that can deny any messages that violate our access control
policy. We discuss our access control policy in detail in Section
III.

We use OS-level sandboxing techniques to limit the in-
teractions of each subsystem with the underlying operating
system. In our current design we use SELinux [33] to sandbox
our subsystems, but other techniques like AppArmor [21],
Systrace [40], or Janus [20], would have been suitable for
our purposes. Table I summarizes the limitations put on each
of our subsystems.

D. The browser kernel

The browser kernel is the base of our OP browser and it
has three main responsibilities: manage subsystems, manage

messages between subsystems, and maintain a detailed se-
curity audit log. To manage subsystems, the browser kernel
is responsible for creating and deleting all processes and
subsystems. The browser kernel creates most processes when
the browser first launches, but it creates web page instances
on demand whenever a user visits a new web page. Also,
the browser kernel multiplexes existing web page instances to
allow the user to navigate to previous web pages (e.g., the user
presses the “back” button).

All messages between subsystems and processes pass
through the browser kernel. The browser kernel implements
message passing using OS-level pipes, and it maintains a
mapping between subsystems and pipes. This mapping allows
the browser kernel to avoid source subsystem spoofing since
the browser kernel can accurately identify the subsystem
connected to a pipe when it receives a message.

To simplify our implementation, the browser kernel is a
single threaded, event-driven component and all messages have
a unique message ID and a global order. This global order
helps make reasoning about security properties easier and
reduces many possible race conditions.

The browser kernel maintains a full audit log of all browser
interactions. The browser kernel records all messages between
subsystems, which enables detailed forensic analysis of our
browser if an attacker is able to compromise our system.

E. The web page subsystem

Each web page instance represents an individual web page.
When a user clicks on a link or is redirected to a new page
the browser kernel creates a new web page instance. For each
web page instance we create a new set of processes to build
the web page. Each web page instance consists of an HTML
parsing and rendering engine, a JavaScript interpreter, plugins,
and an X server for rendering all visual elements included
within the page (Figure 1b). The HTML engine represents the
root HTML document for the web page instance. The HTML
engine delegates all JavaScript interpretation to the JavaScript
component, which communicates back with the HTML engine
to access any document object model (DOM) elements. We
run each plugin object in an OS-level process and plugin
objects also access DOM elements through the HTML engine.
All visual elements are rendered in an Xvnc server, which
streams the rendered content to the UI component where it is
displayed.

One design decision we make is to use an existing HTML
parsing and rendering engine instead of building our own.
In our first design iteration we built our own HTML parsing
and rendering engine based on classes provided in Sun’s Java
runtime. The advantage of this approach is that we could
use the type safety properties of Java to provide stronger
isolation between individual items within HTML documents
(e.g., DOM nodes). However, we found it was difficult to
render correctly even simple web pages because of buggy
HTML handling and cascading style sheets; thus, we decided
to use an existing HTML engine instead.
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Fig. 1. Overall architecture of our OP web browser. Our web browser contains five main subsystems: browser kernel, storage subsystem, network subsystem,
user-interface subsystem, and web page instances; each of these subsystems run within separate OS-level processes. Within an individual web page instance
(b), each subsystem runs in a separate OS-level process, and each plugin instance runs within a separate OS-level process. All of the processes communicate
through the browser kernel, except for the HTML rendering engine and the plugins which communicate directly with a Xvnc server. The Xvnc server renders
the elements locally and streams them to the UI component, via the browser kernel, where they are displayed for the user.

In our current design we use the KHTML HTML parsing
and rendering engine [29]. It has the advantage of rendering
today’s web pages beautifully, but the disadvantage of be-
ing implemented in an unsafe programming language (C++).
Relying on an unsafe programming language for our HTML
engine is problematic because we rely on the HTML engine
to tag JavaScript code and browser plugins with the proper
source domain. We use domains in our security policies to
isolate different scripts and objects on the same web page; the
HTML engine sets the domain and the JavaScript component
and the browser kernel enforce isolation between different
entities. To lessen the impact of this shortcoming we still
allow KHTML to mark the source domain for JavaScript code
and browser plugins, but we check them using our Java-based
HTML parser. However, our HTML parser handles today’s
HTML poorly, so this check produces a silent warning in our
audit log rather than halting the web page instance or notifying
the user when OP detects a violation.

Determining how to include a JavaScript interpreter and
plugins was a relatively easy design decision. For JavaScript
we use the Rhino JavaScript interpreter [37]. Rhino is a high-
quality JavaScript interpreter written in Java, which gives us
strong isolation between different JavaScript instantiations.
Unlike the other components of the web page instance we use a
single OS-level process to handle all JavaScript interpretations.
We justify this decision since we rely on the Java Virtual
Machine (JVM) to provide the necessary level of isolation
between script objects. For browser plugins we use existing
plugins written in unsafe languages since there are too many
plugins for us to re-write them. Plugins already have well-
defined interactions with the rest of the browser so we break

each plugin instance into a separate OS-level process to
provide the necessary level of isolation.

F. The user interface, network, and storage subsystems

Our user-interface (UI) subsystem is designed to isolate
content that comes from web page instances. The UI is a Java
application and implements most typical browser widgets, but
it does not render any web-page content directly. Instead the
web page instance renders its own content and streams the
rendered content to the UI component using the VNC protocol
[44]. By using Java and having the web page instance render
its own content we enforce isolation and add an extra layer
of indirection between the potentially malicious content from
the network and the content being displayed on the screen.
This isolation and indirection allows us to have stronger
guarantees that potentially malicious content will not affect the
UI in unanticipated ways. The UI includes navigation buttons,
an address bar, a status bar, menus, and normal window
decorations.

The UI is the only component in our system that has
unrestricted access to the underlying file system. Any time
the web browser needs to store or retrieve a file, it is done
through the UI to make sure the user has an opportunity to
validate the action using traditional browser UI mechanisms.
This decision is justified since users need the flexibility to
access the file system to download or upload files, but our
design reduces the likelihood of a UI subsystem compromise.

Since other components cannot access the file system or
the network, we provide components to handle these actions.
The storage component stores persistent data, such as cookies,
in an sqlite database. Sqlite stores all data in a single file
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and handles many small objects efficiently, making it a good
choice for our design since it is nimble and easy to sandbox.
The network subsystem implements the HTTP protocol and
downloads content on behalf of other components in the
system.

III. SECURITY POLICY AND ENFORCEMENT

The OP browser is able to enforce different security policies
through flexible access control; we implement three different
security policies to explore the access controls that OP offers.
In addition to implementing the ubiquitous same origin policy,
we develop two novel policies designed to provide additional
flexibility to plugins, while still providing the required security
for the rest of the browser.

In this section we discuss the OP security policies. First we
discuss browser plugins and some of the problems with current
approaches, then the policies we implement with a focus on
how each policy improves the security of browser plugins. In
Section IV we describe how we use formal methods to show
that our access controls are correct and maintain the required
security policy through a compromised browser component.

A. Browser plugins
Browser plugins provide web browsers with the ability to

view additional types of content. Most web browsers have at
least one plugin installed (Adobe reports their Flash Player
has been installed on 99% of Internet users desktops [6]) and
the browser identifies which plugin to use for a particular type
of content by the corresponding MIME type. For example, the
MIME type “application/x-shockwave-flash” is handled by a
flash capable movie player such as Adobe Flash Player [4].
Other popular plugins include Windows Media Player, Adobe
Acrobat, Quicktime, RealPlayer and Java. Plugins provide a
variety of functionality from playing music to just-in-time
compilation of programming languages.

Web developers include plugins within in a web page by
using the OBJECT or EMBED HTML tags. Figure 2 presents
sample HTML used to include plugin content in a web page
and shows the specification of MIME types for the included
content. The first plugin referenced in Figure 2 includes a
flash movie from YouTube. The flash movie is executed by
the flash plugin and has the capability to play different video
content and interact with the user. The second plugin embeds
an instance of a Quicktime capable player to download and
play a video. We refer to the code that is responsible for
viewing a particular MIME type as the plugin and the content
being downloaded and viewed as the plugin content.

Plugins complicate browser security because they are given
unchecked access to browser internals, making it difficult for
the browser to enforce security policies on plugins. Plugins are
supplied to the browser in a binary format and usually loaded
as a dynamically loaded library. Though plugins are provided
with an API to interact with the browser [2], plugins run in the
same address space as the browser, so they are free to modify
browser structures as needed. Thus, a successful attack on a
single plugin leads to a full browser compromise.

Currently plugin providers implement their own ad-hoc
security mechanisms and policies for each different plugin,
which causes security problems even for uncompromised plu-
gins. Security policy goals for the browser are not necessarily
reflected by the plugin security policy resulting in inconsistent
accesses between the browser and and the plugin. Also, there
can be differences in plugin policy between plugin implemen-
tations for the same content type. For example, different Flash
players could allow different cross domain accesses based on
their developers interpretation of Flash security policy.

Another aspect of per-plugin security policy is the com-
plicated configuration presented to the user. For example, the
Adobe Flash Player provides two different security mecha-
nisms that require configuration. The first is the plugin’s local
security settings accessed through an in-browser menu [7].
The second is a server side XML manifest governing cross
domain accesses [5]. Since there are a large number of plugins
available for modern browsers, requiring the user to configure
each one separately is unlikely to be effective.

Providing a common security policy and policy decision
point between plugins and the whole browser is important to
address the security needs of plugins in modern web browsers.

B. Plugin security in OP
To address the shortcomings of current plugins, we design

and implement a plugin architecture to provide security for
plugins in the OP browser. The OP browser enforces security
policy in the browser kernel. Consistent with all other policy
decisions, any plugin related access control is done by the
same security mechanisms enforcing policy for the rest of the
browser.

To enforce security policy we interpose on message passing
in the browser kernel. Each browser process is labeled with a
security context (i.e. domain) depending on the security policy
being used. We run each instance of a plugin in a separate
process that is assigned its own label by the kernel. In order to
correctly label each plugin process the browser kernel inspects
messages that trigger the plugin to load content from a URL.
This security label is then used to make decisions for other
plugin and browser actions. The plugin can be denied access
to browser resources; similarly, the rest of the browser can
be denied access to plugin resources. Each pairwise commu-
nication channel between browser subsystems can have an
access control module operate on the messages. Any security
related state is maintained inside of the corresponding access
control module. Our implementation provides a simple API
for implementing different security policies.

C. Plugin security policies
In addition to developing a plugin architecture, we develop

two novel security policies that specifically address the needs
of plugin security while still providing enough flexibility to
support common plugin usage.

1) Provider domain policy: Provider domain policy allows
a plugin embedded in a page permissions associated with
the source of the plugin content. Media sharing from sites
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<object width="425" height="355">
<param name="movie" value="http://www.youtube.com/v/oNsCaVC4Z0o&rel=1"/>
<param name="wmode" value="transparent"/>

<embed src="http://www.youtube.com/v/oNsCaVC4Z0o&rel=1"
type="application/x-shockwave-flash" wmode="transparent" width="425" height="355"/>

</object>

<object
src="http://movies.apple.com/movies/paramount/iron_man/iron_man-tlr1_h.640.mov"
type="video/quicktime" width=640 height=288 autoplay="true"/>

Fig. 2. This HTML is an page excerpt downloaded from the www.uiuc.edu domain. OBJECT tags are handled by most web clients while EMBED tags are
interpreted by some Mozilla browsers. The URLs that each plugin loads are specified by the SRC attribute. Other parameters for the execution of the plugin
can be specified either with PARAM tags or attributes. The first set of tags references Flash content hosted at www.youtube.com while the second is a movie
hosted at movies.apple.com. The HTML also demonstrates how a page can include content from multiple different sources by specifying a URL in the SRC.

like YouTube allow one site to host the video content and
other content publishers to embed the video into their sites or
blogs. Advertisements are provided by an advertising company
and similarly embedded along with web page content. In
both cases the web page creator has little control over the
content inside an embedded area, especially if it includes
plugin content. Our policy is designed to reflect the intent that
a web page creator has when embedding videos and content
across domain boundaries.

The provider domain policy sets the origin of the plugin
to the site hosting the plugin content. When a page uses
the OBJECT tag to include plugin content, the plugin is
given permissions according to the domain of plugin con-
tent provider. If same-origin policy were applied instead, the
browser would associate the plugin content with the domain
of the page containing the OBJECT tag. The same HTML
from Figure 2 can help to illustrate the difference. Same-
origin policy would treat both plugins as if they came from
the www.uiuc.edu domain, since that is where the web page
is hosted containing the HTML. Our provider domain policy
labels the two plugins differently. The first movie would be
tagged with the domain www.youtube.com, and the second
with movies.apple.com. The page hosting the content is given
permissions according to the www.uiuc.edu domain. Label
differences force separation between the content and prohibits
the embedded content from altering the page or fetching any
resources associated with the www.uiuc.edu domain. Each
of the plugins embedded inside the page can access data
associated with the corresponding domains. For example, the
YouTube video can access cookies, make network connections
and use other resources from www.youtube.com. This example
shows how popular use of plugins can be met inside the
constraints of browser security policy.

The provider domain policy has important security impli-
cations. As content is shared between sites and included in
blogs and websites, the authors of the pages do not need to
be concerned with security when including cross domain con-
tent. Included content is isolated and users viewing websites

including cross domain plugin content are safe from malicious
and vulnerable plugins. This policy limits plugins included
across domains and prohibits plugin content included in this
way from accessing cookies, DOM elements and other browser
components.

2) Plugin freedom policy: The plugin freedom policy pro-
vides additional flexibility to plugins by allowing additional
outgoing network accesses while limiting access to page and
user information contained in the browser. This policy is
motivated by plugins such as Sopcast [3], a peer-to-peer video
player, that needs additional flexibility for outgoing network
connections.

The plugin freedom policy provides local plugin storage
and unlimited network access at the cost of access to DOM
elements and other browser components. To implement this
policy, using the OP browser access controls we simply
prohibit communication between the plugin and any browser
components, except the network and storage subsystem. The
storage subsystem provides a location for per-plugin storage
that is allowed by this policy. Per-plugin storage allows plugins
to have access to local settings and save files in a safe
environment. All network communications are also allowed.
Any other communications are prohibited in and out of the
plugin. The rest of the browser subsystems are able to interact
as normal and provided with standard same-origin protections.

The plugin freedom policy prevents some plugin con-
tent from functioning properly, though media sites such as
YouTube, Apple Movie Trailers and others continue to func-
tion. The plugin content on these pages does not need to
access any of the other browser components besides network
resources. This policy is similar to current plugin operation
in browsers with the scriptable API components removed. Re-
moving interactions with other browser components prevents
plugins from leaking client information across multiple sites if
the plugin is exploited or the plugin content is malicious. Any
plugins that interact with the content on pages will function
incorrectly since any attempted Javascript execution will be
prevented by the access controls.
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IV. FORMAL VERIFICATION

We designed he OP web browser to include the use of
formal methods to verify its correctness. To do better support
formal methods we use small, simple, and exposed APIs that
allow us to model our system and reason about it. Using formal
methods we are able to provide greater assurance that we
preserve our security goals during an attack and compromise.

We formulate the OP web browser within the logical
framework of rewriting logic and use formal reasoning tools
to verify model correctness, including the presence of attacks,
successful compromises and access control [15]. The reason-
ing engine we use is the Maude system [34]. We use the
term “Maude” to refer to both the Maude interpreter and the
language.

Once the browser model has been formally specified we
can use Maude’s search ability for model checking to verify
invariants over the finite state space we need to consider.
The invariants of a browser system fall into two categories:
program invariants and visual invariants. Program invariants
for OP consist of the goals of the access control policy.
These invariants are relatively easily gathered from the source
code and concise specification of security policy. The visual
invariants (e.g., preventing address bar spoofing) need extra
effort to be mapped into program invariants. In this paper,
we model these invariants and we also translate browser
compromise and built-in defenses into rewriting logic rules.
As we explain in the following, OP’s address bar logic and
same origin policy are specified by rewrite rules and equations
in Maude, and we use model checking to search for spoofing
and violation of same origin policy scenarios. The result of the
search is a list of states that are violations of the invariants
specified and the sequences of actions that lead to the invalid
state. States that are violations of security invariants can assist
in the development process by catching potential problems
before they are exploited.

In this section we discuss how we use formal methods
to improve the design of our browser. First we give a very
brief overview of Maude, then we discuss how we created our
model. Finally, we describe how we model check to prove the
absence of address bar spoofing attacks and to verify parts of
our same origin policy implementation.

A. Modeling using Maude
A simple example using Maude and model checking of

invariants is presented in the Maude Manual [16]. The example
involves the model of a clock and uses Maude to search the
state space for states with invalid hour values. The Maude
model for the clock example is presented in Figure 3. This
example illustrates a number of Maude features though we
only describe the ones relevant to the OP browser model we
present later.

Figure 3 shows the Maude model named SIMPLE-CLOCK.
The third line defines a sort, called Clock. A sort is similar to
the class keyword in C++ and simply defines a category for
later use. Line 4 in the figure contains the definition for an
operation called clock, operations act on a sort and generally

1 mod SIMPLE-CLOCK is
2 protecting INT .
3 sort Clock .
4 op clock : Int -> Clock [ctor] .
5 var T : Int .
6 rl clock(T) => clock((T+1) rem 24) .
7 endm

Fig. 3. A simple Maude example from the Maude Manual (Version 2.3).
This example describes a model for a 24 hour clock in Maude.

search in SIMPLE-CLOCK :
clock(0) =>* clock(T)
such that T < 0 or T >= 24 .

Fig. 4. The search statement from the Maude Manual (Version 2.3) showing
how to model check the SIMPLE-CLOCK model invariant using Maude’s
search functionality.

connect a sort (or sorts) to a different set of sorts. In the
SIMPLE-CLOCK model we connect the sort Int to the sort
Clock. Operations do not define how Maude connects the two
types, instead specifies the connection. Rewrite laws begin
with rl and describe transitions between states. The SIMPLE-
CLOCK model has one rewrite law. This rewrite law says that
the clock operation increments the clock variable T and then
takes the remainder after dividing by 24.

Once we define a model in Maude we can use the search
function to have Maude explore the state space and find
states that match our search criteria. For the SIMPLE-CLOCK
example we want to find states which violate an invariant, such
as the clock’s state being outside of the 0 to 24 range. Figure 4
shows the example search statement for the SIMPLE-CLOCK
model. This search statement defines an initial state, 0, and
the condition to match when searching.

The Maude model for the OP browser consists mostly of
definitions of types and state for each component by defining
sorts, operations and variables for each browser component.
To define browser behavior we use rewrite laws to show
transitions between different internal states in the browser. Our
invariants are specified as statements and we use the same
search functionality in Maude to find matching states.

B. Formal models and system implementations

There is often a gap between the formal model used to verify
properties and the system implementation. While we recognize
that this gap exists between our model and system, we feel that
for our uses of formal methods the difference is small enough
that we are able to use the results of model checking to iterate
on design and development. Since we implement each of the
browser components separately and use a compact API for
message passing, the model that we use to formally verify parts
of our browser is very similar to the actual implementation.
The model we create is focused on message passing between
components. We do not verify, for example, that the HTML
parsing engine is bug-free, instead we verify that even if
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<UI-ID : Frame | addrBar: URL, ... >
imsg(count, src, dst, IDENTIFIER, content)
< ... > ...

Fig. 5. The message specification in Maude. The first section of the
specification is a class-like structure, starting with < and ending in >. UI-ID
is the instance identifier of the type, Frame is the type, and after the pipe are
the members of the type. The next line begins with imsg and is the constructor
for the message type. The constructor takes the elements in parenthesis and
creates an object of a specific type. The imsg constructor creates an object of
type Message.

the HTML parsing engine had a bug, the messages that a
code execution attack could generate (potentially any message)
would not force the browser as a whole into a bad state. To
do this, each component is modeled in Maude and aspects of
every component’s internal state are included. Messages are
the means for the browser’s internal state to change.

Our application of formal methods helped us find bugs in
our initial implementation. By model checking our address
bar model we revealed a state that violated our specification
of one address-bar visual invariant. The resulting state was
actually due to a bug in our implementation, as we had
not properly considered the impact of attackers dropping
messages or a compromised component choosing to not send
a particular message. Our model gives an attacker complete
control over the compromised component including the ability
to selectively send some types of messages and not others. We
used the result to fix our access control implementation and
we updated our model accordingly.

In the interest of space we have not included the entire
Maude model. In the following sections we highlight parts
of our model that we use to model check same-origin and
visual invariants. We have not specified all browser invariants
in our model, as this is a first step in our venture into formally
verifying an entire web browser.

C. Modeling the OP browser
Component-based systems can be modeled in Maude as

multi-sets of entities, loosely coupled by a suitable commu-
nication mechanism. For OP, the entities are browser com-
ponents, each with a unique identity, and the communication
mechanism is the message passing API. In the Maude version
of our OP implementation, the states of OP are represented by
symbolic expressions, and the state transitions are specified by
rewrite rules describing the components communication with
each other and the state transformation. We discuss our model
for message passing and processing, user actions, and how
include browser compromise into this model.

Communication between components in OP is done through
the message passing interface, which is the communication
mechanism modeled in Maude. The messages are expressed
as entities in the multi-set of components. The message
specification in Maude is in Figure 5. The messages are tagged
with a count to make sure they are processed in the right
order. Message ordering is preserved by the browser kernel,
and in order to have ordering in the multi-set representation

in Maude, a count attribute is introduced. A simple example
illustrating our model of the message passing interface and
a corresponding state change is is in Figure 6. This rule is
responsible for updating the browser state including address
bar of the user interface.

The browser state as a whole is represented by the objects
corresponding to each of the components. This means that
Maude represents a state as a grouping of the UI, network,
plugin, and other subsystem states. Figure 6 shows an action
that sets the location bar in the UI. The first three lines of
Figure 6 are the current browser state and include the creation
of a message called MSG-SET-LOCATION-BAR using the
imsg constructor. The browser state is rewritten, including in
the UI a new address in the address bar (shown by new-URL)
and the results of the rewrite are the last two lines of the
figure. Rewrite rules such as these cause the Maude model to
change state. Model checking through search simply locates
states which are possible to have as a result of these rules and
satisfy an additional expression.

1) Modeling user actions: We also need to model the user
actions in the browser system, such as clicking the “GO”
button to request a new web page. The Maude model is very
similar to the Java source code we wrote to implement the
UI in the OP web browser. The Maude rule describing the
message generation as a result of the “GO” button being
clicked is listed in Figure 7. This Maude rule is especially
descriptive of the original Java source, as we can see the
message created has the source set to UI-ID, a destination
of KERNEL-ID, the message type of MSG-NEW-URL, and
the URL that is the content of the message. The first two lines
of Figure 7 are the current UI and message queue state, plus
the user action labeled “GO.” The three lines following the
=> marker are the new browser state, which include a new
message being generated by the imsg constructor.

2) Modeling browser component compromise: Our model
also includes potential attack paths. As an example of a
component-level compromise, the attacker could take control
of a web page subsystem instance and using the message
API, force the compromised component to send incorrect URL
information to the UI component, resulting in address bar
spoofing. Setting the address bar to a different location than
the page contents is primarily useful for phishing attacks, and
using access controls we prevent such attacks from being suc-
cessful. In Maude, we express the compromise of a component
as additional rules that generate messages and trigger message
passing and processing like ordinary rules.

D. Model checking address bar invariants

Determining cases that allow the address bar in the browser
to mismatch the page content was examined for Internet
Explorer in recent work by Chen et al. [11]. They search for
violations of invariants specified for GUI elements in Internet
Explorer under normal operation. We are able to verify a
similar result for the OP browser using our formal model of
the message passing interface and our security policy. The key

409



< UI-ID : Frame | addrBar : URL, ... >
< MSG-ID : MsgCount | msg-to-process : N, msg-to-send : M >
imsg(N, webAppId, UI-ID, MSG-SET-LOCATION-BAR, new-URL)
=>
< UI-ID : Frame | addrBar : new-URL, ... >
< MSG-ID : MsgCount | msg-to-process : s(N), msg-to-send : M >

Fig. 6. This is the Maude rule corresponding to the state change due to a SET-LOCATION-BAR message being received. Notation here is similar to that
of Figure 5, the first 3 lines are the current state and creation of the message to be processed. The remaining lines represent the state after the state change.
The full browser state includes other components besides the UI and message queue.

< UI-ID : Frame | addrBar: URL, ... > GO
< MSG-ID : MsgCount | msg-to-process : N, msg-to-send : M >
=>
< UI-ID : Frame | addrBar : URL, ... >
imsg(M, UI-ID, KERNEL-ID, MSG-NEW-URL, URL)
< MSG-ID : MsgCount | msg-to-process : N, msg-to-send : s(M) >

Fig. 7. Maude expression for the “GO” UI button causing a message to be sent. The first line represents the portion of the browser state for the Frame and
the user action being performed, which in turn causes produces a new Frame state and the message with type set to MSG-NEW-URL.

< UI-ID : Frame | AddrBar : S1:String, NavWebApp : WebApp1:Int , ... >
< WebApp2:Int : WebApp | Content : S2:String, ... >
such that (WebApp1:Int == WebApp2:Int) /\ (S1:String =/= S2:String)

Fig. 8. A Maude expression describing the condition checked for address bar spoofing. This condition is used as a test for bad browser states. The first line
is the current state of the browser, specifying the UI and ID for an instance of the web page subsystem. The last line is the comparison, which checks that
the URLs associated with the address bar and web page subsystem are different, indicating a state where the address bar is spoofed.

difference in our approach is that our proof holds even in the
presence of a fully compromised web page instance.

To model check and find cases of address bar spoofing, we
must define a good browser state. Once we have an expression
for good browser states, we can use Maude to search for
the bad ones. We define a good state as a state where the
content of the currently navigated web page matches with
the URL shown in the address bar. The Maude expression
describing spoofing is shown in Figure 8. When we use
the model checking search tool to search from an initial
state, consisting of all the components of OP and some user
actions, the results show there is no logic error leading to the
address bar spoofing scenarios. We also make sure that the
address bar cannot be spoofed once the web page subsystem
is compromised, showing that the access control logic can
defend against possible attack sequences. This result verifies
that if the browser kernel and UI are trusted, no sequence
of messages can violate our address bar invariant, even if an
attacker compromises a web page instance.

E. Model checking same origin policy

Our implementation of same origin policy for the OP
web browser controls access to all browser components. We
use model checking to verify that the same origin policy
cannot be violated by a single component being compromised.
Although our model focuses on interactions with plugins,
other components with similar interactive capabilities, such as
Javascript, benefit from the result. We model a compromised

web page subsystem and plugin, and verify that the access
control implemented in the browser kernel enforces the same
origin policy specified as invariants in our model.

Plugins and Javascript are able to interact with each other
through the the scriptable plugin extension to the Netscape
Plugin API, and we support such interaction in OP. Enforcing
same origin policy for these components is done in the same
manner as our other security policies for plugins in the browser
kernel. The simple message API keeps the state space small
enough for model checking to be tractable when considering
all the possible actions by different browser components. We
prove a few different invariants. For example we prove that a
plugin from one domain can not send a message to a plugin
(or web page subsystem) from another domain and vice versa.

Introducing binary compatibility for the Netscape Plugin
API would increase the size of the message API for plugins,
although our access controls still remain in the browser kernel.
Once OP is binary compatible with the Netscape Plugin API
we should be able to adapt the model and verify that same
origin policy is upheld with the added complexity.

V. ANALYZING BROWSER-BASED ATTACKS

Although we put significant effort into securing our OP web
browser, attacks may still occur. One class of attacks that
may occur are “social engineering” attacks where a user is
fooled into performing an action that violates the security of
the system. For example, researchers from Google found that
attackers fool users into downloading and executing malicious
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content from adult web sites by making them think they are
installing a new video codec in an attempt to view “free”
videos [41]. A second class of attacks that may occur are
web-based application bugs, such as cross-site request forgery
attacks [27]. In these attacks a malicious web site can coax
the browser into performing the actions of a site, such as
transferring money using a banking application, without the
users knowledge or consent. The problem with these classes of
attacks is that they adhere to the browsers security policy and
from the browsers perspective appear to be legitimate actions,
making these types of attacks difficult to prevent.

Our goal is to allow users and system administrator to
recreate the past to analyze browser-based attacks. To analyze
an attack, users and administrators may want to perform two
types of analysis. First, they may want to determine which
web site initiated the attack so they can blacklist the web site
and avoid visiting it again in the future. Second, they may
want to track the effects of known-malicious web sites that
they visited to determine if they were attacked, or to assess
the damage of a successful attack.

One difficulty in analyzing browser-based attacks is that the
activities of the attacker are intermingled with legitimate ac-
tions. Even if users and system administrators have a complete
security audit log that can recreate arbitrary past states and
events, most of the content in the audit log is from legitimate
web usage. Thus, it is difficult to highlight the subset of
browsing activity that is most likely to be part of the attack.

We designed our OP web browser to overcome these short-
comings to enable users and system administrators to better
understand browser-based attacks. To highlight the activities
of an attacker, we use browser-level dependency graphs to
help visualize the attack. Browser-level dependency graphs are
graphs of browser-level objects connected by causal events
within our browser. A causal event is defined as any event
where information flows from one object to another, thus
forming a dependency from the source object to the sink
object. For example, if a user clicks on a link, this forms
a causal link from the web page instance that hosts the link to
the new web page instance that the browser kernel creates in
response. Using these connections, we generate dependency
graphs of attacks to show where an attack came from and to
show what effects an attack had on our system.

To give a more concrete example of a dependency graph,
Figure 9a shows a graph for a successful browser-based attack
from a real web site. For this graph we assume that we (as
the user) know the web site videozfree.com is malicious (as
was pointed out in a recent paper from Google [41])we want to
check if we downloaded files from the site into our file system
anytime in the past. Our analysis starts with the videozfree.com
web page. From videozfree.com we clicked on a still image of
a video and were sent to clipsforadults.com, which displayed
an image that appeared to be a video plugin. When we clicked
on the “play” button, it automatically prompted us to download
a new codec to view the video, which we downloaded as the
file setup.exe. For this experiment the attack was in the middle
of several weeks worth of typical browsing, and our audit

log contained 349,313 events and 1218 different web page
instances, yet we were able to automatically extract this much
smaller subset of the total information available. Also, even
though videozfree.com was listed as the malicious web site, the
actual download came from a different site (zsvcompany.com),
and based on monitoring videozfree.com for several months
this download site changes periodically making it hard to track
using blacklists.

In this section we discuss our techniques for analyzing
browser-based attacks. First we describe the objects we track,
the dependency forming events that connect objects, and the
dependency graphs we generate to facilitate analysis. Then, we
describe an example that illustrates how analyze a cross-site
request forgery attack.

A. Intrusion analysis design
To track attacks using browser-level dependencies we need

to define the objects we monitor and the events that connect
these objects. When defining objects and events we have three
main design considerations. First, we must decide at what level
of granularity we should display our dependency graph. More
coarse-grained dependency graphs will be smaller and easier
to analyze manually, but may lack the fidelity to provide useful
information about the attack. Second, we must decide at what
level of granularity to track dependencies. In general more
coarse-grained dependency tracking will be more efficient
to implement, but could lead to false dependencies due to
excessive tainting. Third, we must decide which events give
the attacker the most direct control over the system and focus
our analysis on these events. For example, we do not track
the event where a web page instance sets the status bar in the
UI. Certainly an attacker could use this as part of an attack,
but is it likely to assist the attacker in fooling the user to do
something else – such as visit a malicious web site – that we
do track.

To strike a balance between analysis fidelity and the amount
of information displayed to the user, we track two primary
objects: web pages and files. Web page objects map directly
to the web page instance subsystem within our browser. Web
page objects are identified by the URL used to open the web
page and we consider different web page instances with the
same base URL to be different objects. Web page objects
consist of HTML documents, images, JavaScript, plugins, etc.
and even though we do record the interactions between these
entities we chose to display them all as a single object to
reduce the number of visual elements in our dependency
graphs. File objects are file system objects, and we track these
as they flow through our browser.

We track events that connect web pages together, and web
pages with files. Whenever a web page creates a new web page
(e.g., the user clicks on a link), the new web page depends on
the web page that initiated the action. When a user downloads
or uploads a file, we connect the file with the associated web
page.

Although we designed our browser to make dependency-
causing events explicit, we still have to put in effort to
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setup.exe:1034

http://zsvcompany.com/download.php?id=4080

http://www.clipsforadults.com/.../movie2.php?id=4080

http://www.videozfree.com/

(a) Forward dependency graph for videozfree attack

http://messages.financenews.com/message.html

http://tinyurl.com/XXXXXX

http://maliciousnews.com/news.html

https://banking.com/transfer.php

http://financenews.com

(b) Backward dependency graph for xsrf attack

Fig. 9. In our dependency graphs the squares are web pages, diamonds are files, ovals are URL requests, and the detection point is shaded. We show URL
requests only when they are the detection point or when the server automatically redirects our request resulting in a web page instance with a different URL
than the requested URL.

To File System
Network Web Page UI

Storage

(1)

(2)

(3)

(4)

(5)
(6)

(7)

Fig. 10. This figure shows how our browser subsystems interact to download
a file to the file system. First, the user clicks on a link which causes (1) the web
page to request the file and (2) the network subsystem returns the downloaded
content to the web page. Then (3) the web page stores the file in the storage
manager and (4) notifies the UI that there is a downloaded file waiting. The
UI then prompts the user and (5) retrieves the file from the storage manager
(6). Finally, (7) the UI saves the file in the file system.

achieve the fine-grained dependency tracking to support the
events we follow. For example, when a user downloads a file
and stores it in the file system the downloaded file travels
through many different subsystems (Figure 10), but we want
to make the connection directly between the web page and
the file without including the intermediate subsystems. When
a user downloads a file they usually initiate this action by
clicking on a link in a web page. The web page then makes a
network request and then stores the file as a persistent object
in our storage subsystem. Then, the web page notifies the
UI that a downloaded file is waiting the storage subsystem,
and the UI retrieves the file from the storage subsystem and
saves it in the file system. We designed the storage and UI
subsystems so that this data will pass through them without
being modified, but an attacker that compromises one of
these components could violate this assumption and result
in dependencies that we miss since the attacker was able to
affect data without using an explicit message. To prevent this

type of unaudited dependency we monitor the storage and
UI subsystems to verify that all objects and files that pass
through them are unmodified. This simple invariant allows us
to track these objects at a fine granularity without monitoring
the internals of each subsystem. An attacker can still leak
information using covert channels [32], but this would require
the attacker to compromise two components, not just one. In
our current implementation we do not perform this check for
the network subsystem, but adding the additional invariant to
verify network object integrity would be straightforward.

We apply the BackTracker [30] graph generation algorithm
to create dependency graphs. The BackTracker graph gener-
ation algorithm starts with a single object, called a detection
point and traverses the audit log to find the set of objects
that are causally connected to the detection point. We use the
backward graph generation algorithm [30] to find the origin
of an attack (e.g., malicious web site) and the forward graph
generation algorithm [31] to track the effects of an attack.

B. Example: cross-site request forgery
In this section we discuss an artificial cross-site request

forgery attack based on a real attack described by Stamos and
Lackey in their Black Hat presentation [46]. We show how
our analysis techniques can help users understand this type of
attack. Our example starts with a victim receiving a monthly
banking statement and noticing a spurious transfer of $5000
and our goal is to figure out how this transfer occurred.

The starting point for our analysis is the specific HTTP
request that resulted in the transfer of funds. We assume the
victim can identify the specific network request that lead to
the transfer (perhaps with the help of the bank). Starting with
this request, we work our way backward to figure out what
went wrong.
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Fig. 11. Loading latencies for OP and Firefox.

Figure 9b shows the dependency graph for this attack. The
request in question originated from the maliciousnews.com
site. The victim arrived at the maliciousnews.com site by
visiting a financial new site, financenews.com and going
to message boards (messages.financenews.com) to look for
“leaked news” about stocks of interest. The victim found a
story they were interested in and clicked on a tinyurl.com
link that redirected them to maliciousnews.com. The news
story on the maliciousnews.com site contained an invisible
inline HTML frame (iframe) that issued the request to transfer
funds. This action was possible because of a design flaw in a
banking application that made available to the iframe a login
cookie that was created when the user logged into the banking
application in a previous browsing session. This attack was not
the result of a browser bug, the browser correctly enforced
the same origin policy in this example. This type of attack
is commonly referred to as a cross-site request forgery (xsrf)
attack.

One omission from this dependency graph is the cookie
connecting the maliciousnews.com site with the banking ap-
plication. We filter out cookies because many web sites use
cookies to track users across multiple unrelated sites, and
including cookies results in large dependency graphs. We
could have created a list of well-known tracking cookies and
removed only these tracking cookies from our graphs, but we
did not explore this alternative technique for this paper.

VI. EVALUATION

In this section we evaluate the performance of OP and we
present a qualitative security analysis of our browser.

A. Performance evaluation

To evaluate the OP web browser performance we measure
page load times and to determine the file system impact from
the extensive logging we examine the size of the audit logs
for single page loads. Our goal when performing these eval-
uations is only to verify that the browser does not introduce
unreasonable delays that are noticeable by the user. We also

Site Audit Log Size (bytes)
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google.com
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cs.uiuc.edu

wikipedia.org
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175104

156672

Fig. 12. Audit log size generated for a single visit.

aim to check that the logs for a running browser are reasonable
in size. All experiments were carried out on a 2.66GHz Intel
Core 2 Duo with 2GB of memory and a 250GB serial ATA
hard drive. The OS is Fedora Core 7, running the 64bit version
of the Linux kernel 2.6.22. We use Firefox 2.0.0.12 as a base
for performance comparisons.

To measure the latency introduced by our browser we
compare the load times of a few common pages with those
of Firefox. Figure 11 shows a list of the sites tested and the
loading latency times. Each page is loaded 5 times, and the
loading times are averaged. To measure the latency in Firefox
we use an extension that monitors internal Firefox events to
determine page load times. We monitor similar events inside
of the OP browsers web page subsystem. Caching is disabled
in Firefox for all tests. The results in Figure 11 indicate that
we have not introduced latency that would be detrimental to
a user using OP. The primary slowdown over Firefox is due
to our implementation of Javascript.

We also examine the footprint of the audit log that is
generated for each site. The audit log is stored as a single file
consisting of all the events recorded during a page load inside
of OP. After each test the audit log is cleared and the browser
restarted to provide a clean start. As can be seen in Figure
12 the amount of space needed to record events is small for a
single page. The size is largely dependent on the size of the
pages being downloaded rather than data introduced for audit
purposes. To quantify the likely storage needed for typical
browsing, one of the authors used OP for typical browsing
needs over several weeks. Over this period of time they created
over 1000 web page instances and accumulated an audit log
of 206MB, which is reasonable considering the low cost of
storage.

B. Security analysis
We designed OP to prevent browser-based attacks, but com-

promises are still possible. We make heavy use of type safe
programming languages to reduce the likelihood of memory
corruption attacks and we use formal methods to help us
reason about the security policies we implement. However,
our implementation could contain exploitable vulnerabilities;
in this section we discuss the impact of successful attacks
on OP subsystems. In our analysis we consider a successful
compromise of a single subsystem.

Successful attacks on the web page subsystem will have
limited impact on the overall security of our browser. A
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compromised web page subsystem can only send messages
to other subsystems, and has limited interactions with the
local system. If the attack results in malicious messages being
sent inside the browser, the browser kernel enforces security
policy and forces the compromised subsystem to comply with
local security policy. As a result, a successful attack on a web
page subsystem only affects the single compromised web page
instance, the browser kernel protects other web page instances
being hosted by the browser.

Successful attacks on our UI, storage, and network subsys-
tems are more severe than successful attacks on the web page
subsystem. A compromised UI can tweak the user interface
and access the file system, a compromised storage subsys-
tem provides attackers with unchecked access to persistent
browser storage (e.g., cookies), and a compromised network
subsystem gives attackers the ability to make arbitrary network
connections and to interpose on network traffic from all
active web page instances. Attacks targeting these subsystems
require sophisticated sequences of messages to be sent out.
To mitigate this threat, our security policies maintain internal
state while parsing messages and prevent spurious and out
of order messages from being sent. Attacks may also be less
likely since we make extensive use of Java to prevent memory
corruption and the subsystems are simple and qualitatively
easier to reason about than the components of the web page
subsystem.

Successful attacks on the browser kernel are the most severe
and lead to a full browser compromise. Since the browser
kernel is trusted it can access all browser-level states and
events. However, our browser kernel is simple (only 1221 lines
of C++ code) and has limited functionality, which simplifies
reasoning about correctness.

VII. RELATED WORK

In addition to the projects we already discussed in this
paper, our work is related to previous studies in browser-based
security.

Our OP web browser introduces a new architecture for
building more secure web browsers. The most closely related
works are Tahoma [17], the Building a Secure Web Browser
project [22], and a recent position paper by Reis, et al. [43]
which all propose new browser architectures. Tahoma shares
many of the same design principles as OP, but our architecture
differs in two key ways. First, Tahoma uses VMMs to provide
isolation for different web-based applications, and they use
a manifest to help craft their network policy. In contrast,
we use OS-level mechanisms for isolation and we support
existing web-based applications, and we track interactions
at a more fine level of granularity, allowing us to explore
novel policies such as our plugin policy. However, these two
architectures are complementary: one could imagine OP using
Tahoma to provide even stronger isolation. In the Building
a Secure Web Browser project, the authors propose a new
browser architecture that relies on the underlying OS policies
(e.g., file system permissions) to enforce browser security. OP
handles security policies in the browser kernel, giving us more

flexibility. In a recent position paper by Reis, et al. the authors
share many design principles and philosophies with OP, but
this concurrent work is a position paper and does not include
an implementation or evaluation.

A number of recent projects develop techniques for securing
web-based applications [18], [14], [13], securing JavaScript
[42], [51], [26], [9], supporting mashups [25], protecting
privacy [24], [45], enforcing the same-origin policy [28],
[12], adding new abstractions for improved sharing [49], and
overcoming DNS rebinding attacks in browsers [23]. These
projects are orthogonal to OP, our goal is to provide a more
secure platform to implement these, and other, techniques.

The idea of sandboxing browsers was first introduced by
Goldberg [20], and GreenBorder is a recent commercial prod-
uct that sandboxes Internet Explorer [1]. We use this type
of sandboxing in our OP browser as the starting point for
our security, and we focus on more fine-grained interactions
within the browser itself. Plus, by breaking our browser into
different components we apply different sandboxing rules to
each subsystem, giving us even more control over our browsers
interactions with the underlying system.

We show how our browser can be used to analyze browser-
based attacks; current approaches for analyzing intrusions will
not work for browser-based attacks. Several recent projects
[30], [31], [19] use OS-level dependency graphs to highlight
the subset of activity on a system that is likely to be part
of an attack. These techniques are effective for server-style
workloads where servers isolate distinct sessions into different
OS-level processes, thus allowing them to track malicious
sessions using OS-level states and events. However, these
techniques fall short when there are long-lived processes that
handle multiple sessions because they taint conservatively
entire OS-level objects and cannot separate out unrelated
activities using OS-level events alone. In addition to OS-level
techniques, researchers have been able to analyze browser-
based attacks by using client-based honeypots [50], [36], [41]
to crawl the Internet looking for malicious sites. For example,
the HoneyMonkey project [50] batches many different sites
together, and when they detect a malicious site they re-process
each site in isolation to determine which one was responsible
for the attack. These techniques work well for automated
crawling experiments, but are not suitable for analyzing active
browsers since they fail to capture and integrate the interac-
tions of the user, something OP handles well.

VIII. CONCLUSIONS

We have described the OP web browser and the different
elements that make our browser secure. We have shown that
by using an architecture that is designed to be secure we can
enforce security policies that are flexible enough to apply to
browser plugins, while at the same time formally verifying
important security properties.

The OP web browser is responsive to user interaction and
implements features that make it compatible with current web
pages. We include two plugins, supporting Flash compatible
content as well as other multimedia content, Javascript and

414



Source subsystem

Destination 

subsystem Message description

Includes return 

message

UI, HTML Kernel New web page.  Tells the kernel to open a new web page instance. No

HTML, JS, Plugin Network

Fetch URL.  Fetch an object from the network, return data, redirected URLs, and 

protocol metadata. Yes

Kernel HTML Set URL.  Sets the base URL for a newly created web page instance. No

HTML, Javascript UI Set status, location, title.  Sets the UI status bar, location address, and page title. No

UI, Xvnc Xvnc, UI

Raw VNC data.  Mechanism for transmitting VNC data between the UI and the current 

Xvnc server.  These are two separate one-way messages. No

UI Kernel

Set current web page instance.  Gives the UI the ability to navigate the browsing 

history. No

UI Kernel

Stop current page loading.  Notifies the kernel that the user wants to stop loading the 

current web page. No

Kernel UI

New web page instance notification.  Notifies the UI of each new web page instance, 

the UI uses this information to track browsing history. No

All Storage Store and retrieve object.  Allows all subsystems to store and retrieve persistant data. Yes

All Storage

Object acl add / remove user.  By default all objects are only accessable by the 

subsystem that created them, but owning subsystems can add additional readers to 

stored objects. No

HTML UI

Object ready for download.  Web pages notfiy the UI when downloaded content (e.g., 

downloaded PDF files) is ready to be saved. No

Network, HTML Storage

Store/retreieve/delete cookies.  Mechanism for the network and HTML (in response to 

Javascript) to manage cookies. Yes

HTML, Plugin Javascript Execute Javascript.  Mechanism for executing Javascript. Yes

HTML Javascript Set Javascript event handler.  Sets the event handling code for Javascript events. No

HTML Javascript

Invoke Javascript event handler.  Invokes the Javascript handling code for a particular 

event. Yes

HTML Plugin Set URL. Sets the base URL for a newly created plugin. No

Javascript HTML Access DOM element.  Provides access to DOM elements. Yes

HTML Plugin Call NPAPI function.  The browser makes a call into the plugin Yes

Plugin HTML Call NPAPI Function.  The plugin makes a call into the browser Yes

Fig. 13. Message API for OP subsystems. In this figure we list the origin (or source) of the message and the destination subsystem, as well as a text
description explaining the purpose of the message. Some messages include a separate return message that is a reply from the destination subsystem back to
the source.

basic web page support, giving us a functional browser ca-
pable of enforcing security policies. We have also included
plugins into our security model, which are difficult for cur-
rent browsers to control and enforce policy upon. Using the
system’s implementation we have created and shown a formal
model using Maude and model checked invariants describing
the security of our browser. We have also shown how the OP
web browser can assist in forensic examination of attacks that
we are unable to prevent.

All of these elements build up the OP web browser security,
creating a web client capable of withstanding attack. We have
demonstrated that by design it is not vulnerable to many forms
of browser attacks while not limiting the functionality of the
browser.

APPENDIX

In Figure 13 we list our full message passing API. All
messages include a header that lists the source ID, the desti-
nation ID, a global message ID, the message type, an optional
message value, and a field for the length of the payload. For
messages with a payload, the data follows directly after the
header. The message data contains the message-specific data,
such as a URL for a fetch URL message.
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