
Page 1Disco: Running Commodity Operating Systems on Scalable Multiprocessors

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

In this paper we examine the problem of extending modern
operating systems to run efficiently on large-scale shared
memory multiprocessors without a large implementation ef-
fort. Our approach brings back an idea popular in the 1970s,
virtual machine monitors. We use virtual machines to run
multiple commodity operating systems on a scalable multi-
processor. This solution addresses many of the challenges
facing the system software for these machines. We demon-
strate our approach with a prototype called Disco that can
run multiple copies of Silicon Graphics’ IRIX operating sys-
tem on a multiprocessor. Our experience shows that the
overheads of the monitor are small and that the approach
provides scalability as well as the ability to deal with the
non-uniform memory access time of these systems. To re-
duce the memory overheads associated with running multi-
ple operating systems, we have developed techniques where
the virtual machines transparently share major data struc-
tures such as the program code and the file system buffer
cache. We use the distributed system support of modern op-
erating systems to export a partial single system image to the
users. The overall solution achieves most of the benefits of
operating systems customized for scalable multiprocessors
yet it can be achieved with a significantly smaller implemen-
tation effort.

1 Introduction
Scalable computers have moved from the research lab to the
marketplace. Multiple vendors are now shipping scalable
systems with configurations in the tens or even hundreds of
processors. Unfortunately, the system software for these ma-
chines has often trailed hardware in reaching the functional-
ity and reliability expected by modern computer users.

Operating systems developers shoulder much of the
blame for the inability to deliver on the promises of these
machines. Extensive modifications to the operating system
are required to efficiently support scalable machines. The
size and complexity of modern operating systems have made
these modifications a resource-intensive undertaking.

In this paper, we present an alternative approach for
constructing the system software for these large computers.
Rather than making extensive changes to existing operating
systems, we insert an additional layer of software between
the hardware and operating system. This layer acts like a vir-
tual machine monitor in that multiple copies of “commodity”
operating systems can be run on a single scalable computer.
The monitor also allows these commodity operating systems
to efficiently cooperate and share resources with each other.
The resulting system contains most of the features of custom
scalable operating systems developed specifically for these
machines at only a fraction of their complexity and imple-
mentation cost. The use of commodity operating systems
leads to systems that are both reliable and compatible with
the existing computing base.

To demonstrate the approach, we have constructed a
prototype system targeting the Stanford FLASH shared
memory multiprocessor [17], an experimental cache coher-
ent non-uniform memory architecture (ccNUMA) machine.
The prototype, called Disco, combines commodity operating
systems not originally designed for such large-scale multi-
processors to form a high performance system software base.

Disco contains many features that reduce or eliminate
the problems associated with traditional virtual machine
monitors. Specifically, it minimizes the overhead of virtual
machines and enhances the resource sharing between virtual
machines running on the same system. Disco allows the op-
erating systems running on different virtual machines to be
coupled using standard distributed systems protocols such as
NFS and TCP/IP. It also allows for efficient sharing of mem-
ory and disk resources between virtual machines. The shar-
ing support allows Disco to maintain a global buffer cache
transparently shared by all the virtual machines, even when
the virtual machines communicate through standard distrib-
uted protocols.

Our experiments with realistic workloads on a detailed
simulator of the FLASH machine show that Disco achieves
its goals. With a few simple modifications to an existing
commercial operating system, the basic overhead of virtual-
ization is at most 16% for all our uniprocessor workloads.
We show that a system with eight virtual machines can run
some workloads 40% faster than on a commercial symmetric
multiprocessor operating system by increasing the scalabili-
ty of the system software, without substantially increasing
the system’s memory footprint. Finally, we show that page

Disco: Running Commodity Operating Systems on Scalable Multiprocessors
Edouard Bugnion, Scott Devine, and Mendel Rosenblum

Computer Systems Laboratory
Stanford University,
Stanford, CA 94305

{bugnion, devine, mendel}@cs.stanford.edu
http://www-flash.stanford.edu/Disco

SOSP 16.
(c) ACM 1997.

Page 2Disco: Running Commodity Operating Systems on Scalable Multiprocessors

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

placement and dynamic page migration and replication al-
low Disco to hide the NUMA-ness of the memory system,
improving the execution time by up to 37%.

In Section 2, we provide a more detailed presentation of
the problem being addressed. Section 3 describes an over-
view of the approach and the challenges of using virtual ma-
chines to construct the system software for large-scale
shared-memory multiprocessors. Section 4 presents the de-
sign and implementation of Disco and Section 5 shows ex-
perimental results. We end the paper with a discussion of
related work in Section 6 and conclude in Section 7.

2 Problem Description
This paper addresses the problems seen by computer vendors
attempting to provide system software for their innovative
hardware. For the purposes of this paper, the innovative
hardware is scalable shared memory multiprocessors, but the
issues are similar for any hardware innovation that requires
significant changes in the system software. For shared mem-
ory multiprocessors, research groups have demonstrated
prototype operating systems such as Hive [5] and Hurricane
[25] that address the challenges of scalability and fault con-
tainment. Silicon Graphics has announced the Cellular IRIX
kernel to support its shared memory machine, the
Origin2000 [18]. These designs require significant OS
changes, including partitioning the system into scalable
units, building a single system image across the units, as well
as other features such as fault containment [5] and ccNUMA
management [26].

With the size of the system software for modern com-
puters in the millions of lines of code, the changes for ccNU-
MA machines represent a significant development cost.
These changes have an impact on many of the standard mod-
ules that make up a modern system, such as virtual memory
management and the scheduler. As a result, the system soft-
ware for these machines is generally delivered significantly
later than the hardware. Even when the changes are function-
ally complete, they are likely to introduce instabilities for a
certain period of time.

Late, incompatible, and possibly even buggy system
software can significantly impact the success of such ma-
chines, regardless of the innovations in the hardware. As the
computer industry matures, users expect to carry forward
their large base of existing application programs. Further-
more, with the increasing role that computers play in today’s
society, users are demanding highly reliable and available
computing systems. The cost of achieving reliability in com-
puters may even dwarf the benefits of the innovation in hard-
ware for many application areas.

Computer hardware vendors that use “commodity” op-
erating systems such as Microsoft’s Windows NT [9] face an
even greater problem in obtaining operating system support
for their ccNUMA multiprocessors. These vendors need to
persuade an independent company to make changes to the

operating system to support the new hardware. Not only
must these vendors deliver on the promises of the innovative
hardware, they must also convince powerful software com-
panies that running on their hardware is worth the effort of
the port [20].

Given this situation, it is no small wonder that computer
architects frequently complain about the constraints and in-
flexibility of system software. From their perspective, these
software constraints are an impediment to innovation. To re-
duce the gap between hardware innovations and the adapta-
tion of system software, system developers must find new
ways to develop their software more quickly and with fewer
risks of incompatibilities and instabilities.

3 A Return to Virtual Machine Monitors
To address the problem of providing system software for
scalable multiprocessors, we have developed a new twist on
the relatively old idea of virtual machine monitors [13].
Rather than attempting to modify existing operating systems
to run on scalable shared-memory multiprocessors, we insert
an additional layer of software between the hardware and the
operating system. This layer of software, called a virtual ma-
chine monitor, virtualizes all the resources of the machine,
exporting a more conventional hardware interface to the op-
erating system. The monitor manages all the resources so
that multiple virtual machines can coexist on the same mul-
tiprocessor. Figure 1 shows how the virtual machine monitor
allows multiple copies of potentially different operating sys-
tems to coexist.

Virtual machine monitors, in combination with com-
modity and specialized operating systems, form a flexible
system software solution for these machines. A large ccNU-
MA multiprocessor can be configured with multiple virtual
machines each running a commodity operating system such
as Microsoft’s Windows NT or some variant of UNIX. Each
virtual machine is configured with the processor and memo-
ry resources that the operating system can effectively handle.
The virtual machines communicate using standard distribut-
ed protocols to export the image of a cluster of machines.

Although the system looks like a cluster of loosely-cou-
pled machines, the virtual machine monitor uses global pol-
icies to manage all the resources of the machine, allowing
workloads to exploit the fine-grain resource sharing poten-
tial of the hardware. For example, the monitor can move
memory between virtual machines to keep applications from
paging to disk when free memory is available in the machine.
Similarly, the monitor dynamically schedules virtual proces-
sors on the physical processors to balance the load across the
machine.

The use of commodity software leverage the significant
engineering effort invested in these operating systems and
allows ccNUMA machines to support their large application
base. Since the monitor is a relatively simple piece of code,
this can be done with a small implementation effort as well

Page 3Disco: Running Commodity Operating Systems on Scalable Multiprocessors

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

as with a low risk of introducing software bugs and incom-
patibilities.

The approach offers two different possible solutions to
handle applications whose resource needs exceed the scal-
ability of commodity operating systems. First, a relatively
simple change to the commodity operating system can allow
applications to explicitly share memory regions across virtu-
al machine boundaries. The monitor contains a simple inter-
face to setup these shared regions. The operating system is
extended with a special virtual memory segment driver to al-
low processes running on multiple virtual machines to share
memory. For example, a parallel database server could put
its buffer cache in such a shared memory region and have
query engines running on multiple virtual machines.

Second, the flexibility of the approach supports special-
ized operating systems for resource-intensive applications
that do not need the full functionality of the commodity op-
erating systems. These simpler, specialized operating sys-
tems better support the needs of the applications and can
easily scale to the size of the machine. For example, a virtual
machine running a highly-scalable lightweight operating
system such as Puma [24] allows large scientific applications
to scale to the size of the machine. Since the specialized op-
erating system runs in a virtual machine, it can run alongside
commodity operating systems running standard application
programs. Similarly, other important applications such as
database and web servers could be run in highly-customized
operating systems such as database accelerators.

Besides the flexibility to support a wide variety of work-
loads efficiently, this approach has a number of additional
advantages over other system software designs targeted for
ccNUMA machines. Running multiple copies of an operat-
ing system, each in its own virtual machine, handles the chal-

FIGURE 1. Architecture of Disco: Disco is a virtual machine monitor, a software layer between the hardware and mul-
tiple virtual machines that run independent operating systems. This allows multiple copies of a commodity operating sys-
tem to coexist with specialized “thin” operating systems on the same hardware. The multiprocessor consists of a set of
processing elements (PE) connected by a high-performance interconnect. Each processing element contains a number of
processors and a portion of the memory of the machine.

Thin OSSMP-OS OSOS OS

DB NFS Scientific AppPmake

Disco

Interconnect

PE PE PE PE PE PE PE PE

ccNUMA Multiprocessor

lenges presented by ccNUMA machines such as scalability
and fault-containment. The virtual machine becomes the unit
of scalability, analogous to the cell structure of Hurricane,
Hive, and Cellular IRIX. With this approach, only the mon-
itor itself and the distributed systems protocols need to scale
to the size of the machine. The simplicity of the monitor
makes this task easier than building a scalable operating sys-
tem.

The virtual machine also becomes the unit of fault con-
tainment where failures in the system software can be con-
tained in the virtual machine without spreading over the
entire machine. To provide hardware fault-containment, the
monitor itself must be structured into cells. Again, the sim-
plicity of the monitor makes this easier than to protect a full-
blown operating system against hardware faults.

NUMA memory management issues can also be han-
dled by the monitor, effectively hiding the entire problem
from the operating systems. With the careful placement of
the pages of a virtual machine’s memory and the use of dy-
namic page migration and page replication, the monitor can
export a more conventional view of memory as a uniform
memory access (UMA) machine. This allows the non-
NUMA-aware memory management policies of commodity
operating systems to work well, even on a NUMA machine.

Besides handling ccNUMA multiprocessors, the ap-
proach also inherits all the advantages of traditional virtual
machine monitors. Many of these benefits are still appropri-
ate today and some have grown in importance. By exporting
multiple virtual machines, a single ccNUMA multiprocessor
can have multiple different operating systems simultaneous-
ly running on it. Older versions of the system software can
be kept around to provide a stable platform for keeping leg-
acy applications running. Newer versions can be staged in

Page 4Disco: Running Commodity Operating Systems on Scalable Multiprocessors

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

carefully with critical applications residing on the older op-
erating systems until the newer versions have proven them-
selves. This approach provides an excellent way of
introducing new and innovative system software while still
providing a stable computing base for applications that favor
stability over innovation.

3.1 Challenges Facing Virtual Machines
Unfortunately, the advantages of using virtual machine mon-
itors come with certain disadvantages as well. Among the
well-documented problems with virtual machines are the
overheads due to the virtualization of the hardware resourc-
es, resource management problems, and sharing and com-
munication problems.

Overheads. The overheads present in traditional virtual
machine monitors come from many sources, including the
additional exception processing, instruction execution and
memory needed for virtualizing the hardware. Operations
such as the execution of privileged instructions cannot be
safely exported directly to the operating system and must be
emulated in software by the monitor. Similarly, the access to
I/O devices is virtualized, so requests must be intercepted
and remapped by the monitor.

In addition to execution time overheads, running multi-
ple independent virtual machines has a cost in additional
memory. The code and data of each operating system and ap-
plication is replicated in the memory of each virtual ma-
chine. Furthermore, large memory structures such as the file
system buffer cache are also replicated resulting in a signifi-
cant increase in memory usage. A similar waste occurs with
the replication of file systems for the different virtual ma-
chines.

Resource Management. Virtual machine monitors fre-
quently experience resource management problems due to
the lack of information available to the monitor to make
good policy decisions. For example, the instruction execu-
tion stream of an operating system’s idle loop or the code for
lock busy-waiting is indistinguishable at the monitor’s level
from some important calculation. The result is that the mon-
itor may schedule resources for useless computation while
useful computation may be waiting. Similarly, the monitor
does not know when a page is no longer being actively used
by a virtual machine, so it cannot reallocate it to another vir-
tual machine. In general, the monitor must make resource
management decisions without the high-level knowledge
that an operating system would have.

Communication and Sharing. Finally, running multiple
independent operating systems made sharing and communi-
cation difficult. For example under CMS on VM/370, if a
virtual disk containing a user’s files was in use by one virtual
machine it could not be accessed by another virtual machine.
The same user could not start two virtual machines, and dif-
ferent users could not easily share files. The virtual machines

looked like a set of independent stand-alone systems that
simply happened to be sharing the same hardware.

Although these disadvantages still exist, we have found
their impact can be greatly reduced by combining recent ad-
vances in operating system technology with some new tricks
implemented in the monitor. For example, the prevalence of
support in modern operating systems for interoperating in a
distributed environment greatly reduces the communication
and sharing problems described above. In the following sec-
tion we present techniques that allow the overheads to be
small compared to the benefits that can be achieved through
this approach.

4 Disco: A Virtual Machine Monitor
Disco is a virtual machine monitor designed for the FLASH
multiprocessor [17], a scalable cache-coherent multiproces-
sor. The FLASH multiprocessor consists of a collection of
nodes each containing a processor, main memory, and I/O
devices. The nodes are connected together with a high-per-
formance scalable interconnect. The machines use a directo-
ry to maintain cache coherency, providing to the software the
view of a shared-memory multiprocessor with non-uniform
memory access times. Although written for the FLASH ma-
chine, the hardware model assumed by Disco is also avail-
able on a number of commercial machines including the
Convex Exemplar [4], Silicon Graphics Origin2000 [18],
Sequent NUMAQ [19], and DataGeneral NUMALiine.

This section describes the design and implementation of
Disco. We first describe the key abstractions exported by
Disco. We then describe the implementation of these ab-
stractions. Finally, we discuss the operating system require-
ments to run on top of Disco.

4.1 Disco’s Interface
Disco runs multiple independent virtual machines simulta-
neously on the same hardware by virtualizing all the resourc-
es of the machine. Each virtual machine can run a standard
operating system that manages its virtualized resources inde-
pendently of the rest of the system.

Processors. To match the FLASH machine, the virtual
CPUs of Disco provide the abstraction of a MIPS R10000
processor. Disco correctly emulates all instructions, the
memory management unit, and the trap architecture of the
processor allowing unmodified applications and existing op-
erating systems to run on the virtual machine. Though re-
quired for the FLASH machine, the choice of the processor
was unfortunate for Disco since the R10000 does not support
the complete virtualization of the kernel virtual address
space. Section 4.3.1 details the OS changes needed to allow
kernel-mode code to run on Disco.

Besides the emulation of the MIPS processor, Disco ex-
tends the architecture to support efficient access to some pro-
cessor functions. For example, frequent kernel operations

Page 5Disco: Running Commodity Operating Systems on Scalable Multiprocessors

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

such as enabling and disabling CPU interrupts and accessing
privileged registers can be performed using load and store in-
structions on special addresses. This interface allows operat-
ing systems tuned for Disco to reduce the overheads caused
by trap emulation.

Physical Memory. Disco provides an abstraction of main
memory residing in a contiguous physical address space
starting at address zero. This organization was selected to
match the assumptions made by the operating systems we
run on top of Disco.

Since most commodity operating systems are not de-
signed to effectively manage the non-uniform memory of the
FLASH machine, Disco uses dynamic page migration and
replication to export a nearly uniform memory access time
memory architecture to the software. This allows a non-
NUMA aware operating system to run well on FLASH with-
out the changes needed for NUMA memory management.

I/O Devices. Each virtual machine is created with a speci-
fied set of I/O devices, such as disks, network interfaces, pe-
riodic interrupt timers, clock, and a console. As with
processors and physical memory, most operating systems as-
sume exclusive access to their I/O devices, requiring Disco
to virtualize each I/O device. Disco must intercept all com-
munication to and from I/O devices to translate or emulate
the operation.

Because of their importance to the overall performance
and efficiency of the virtual machine, Disco exports special
abstractions for the SCSI disk and network devices. Disco
virtualizes disks by providing a set of virtual disks that any
virtual machine can mount. Virtual disks can be configured
to support different sharing and persistency models. A virtu-
al disk can either have modifications (i.e. disk write requests)
stay private to the virtual machine or they can be visible to
other virtual machines. In addition, these modifications can
be made persistent so that they survive the shutdown of the
virtual machine or non-persistent so that they disappear with
each reboot.

To support efficient communication between virtual
machines, as well as other real machines, the monitor virtu-
alizes access to the networking devices of the underlying
system. Each virtual machine is assigned a distinct link-level
address on an internal virtual subnet handled by Disco. Be-
sides the standard network interfaces such as Ethernet and
FDDI, Disco supports a special network interface that can
handle large transfer sizes without fragmentation. For com-
munication with the world outside the machine, Disco acts as
a gateway that uses the network interfaces of the machine to
send and receive packets.

4.2 Implementation of Disco
Like most operating systems that run on shared-memory
multiprocessors, Disco is implemented as a multi-threaded
shared memory program. Disco differs from existing sys-
tems in that careful attention has been given to NUMA mem-

ory placement , cache-aware data s t ructures , and
interprocessor communication patterns. For example, Disco
does not contain linked lists or other data structures with
poor cache behavior. The small size of Disco, about 13,000
lines of code, allows for a higher degree of tuning than is
possible with million line operating systems.

To improve NUMA locality, the small code segment of
Disco, currently 72KB, is replicated into all the memories of
FLASH machine so that all instruction cache misses can be
satisfied from the local node. Machine-wide data structures
are partitioned so that the parts that are accessed only or
mostly by a single processor are in a memory local to that
processor.

For the data structures accessed by multiple processors,
very few locks are used and wait-free synchronization [14]
using the MIPS LL/SC instruction pair is heavily employed.
Disco communicates through shared-memory in most cases.
It uses inter-processor interrupts for specific actions that
change the state of a remote virtual processor, for example
TLB shootdowns and posting of an interrupt to a given vir-
tual CPU. Overall, Disco is structured more like a highly
tuned and scalable SPLASH application [27] than like a gen-
eral-purpose operating system.

4.2.1 Virtual CPUs

Like previous virtual machine monitors, Disco emulates the
execution of the virtual CPU by using direct execution on the
real CPU. To schedule a virtual CPU, Disco sets the real ma-
chines’ registers to those of the virtual CPU and jumps to the
current PC of the virtual CPU. By using direct execution,
most operations run at the same speed as they would on the
raw hardware. The challenge of using direct execution is the
detection and fast emulation of those operations that cannot
be safely exported to the virtual machine. These operations
are primarily the execution of privileged instructions per-
formed by the operating system such as TLB modification,
and the direct access to physical memory and I/O devices.

For each virtual CPU, Disco keeps a data structure that
acts much like a process table entry in a traditional operating
system. This structure contains the saved registers and other
state of a virtual CPU when it is not scheduled on a real CPU.
To perform the emulation of privileged instructions, Disco
additionally maintains the privileged registers and TLB con-
tents of the virtual CPU in this structure.

On the MIPS processor, Disco runs in kernel mode with
full access to the machine’s hardware. When control is given
to a virtual machine to run, Disco puts the processor in su-
pervisor mode when running the virtual machine’s operating
system, and in user mode otherwise. Supervisor mode allows
the operating system to use a protected portion of the address
space (the supervisor segment) but does not give access to
privileged instructions or physical memory. Applications
and kernel code can however still be directly executed since
Disco emulates the operations that cannot be issued in super-
visor mode. When a trap such as page fault, system call, or

Page 6Disco: Running Commodity Operating Systems on Scalable Multiprocessors

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

bus error occurs, the processor traps to the monitor that em-
ulates the effect of the trap on the currently scheduled virtual
processor. This is done by updating some of the privileged
registers of the virtual processor and jumping to the virtual
machine’s trap vector.

Disco contains a simple scheduler that allows the virtual
processors to be time-shared across the physical processors
of the machine. The scheduler cooperates with the memory
management to support affinity scheduling that increases
data locality.

4.2.2 Virtual Physical Memory

To virtualize physical memory, Disco adds a level of address
translation and maintains physical-to-machine address map-
pings. Virtual machines use physical addresses that have
memory starting at address zero and continuing for the size
of virtual machine’s memory. Disco maps these physical ad-
dresses to the 40 bit machine addresses used by the memory
system of the FLASH machine.

Disco performs this physical-to-machine translation us-
ing the software-reloaded translation-lookaside buffer
(TLB) of the MIPS processor. When an operating system at-
tempts to insert a virtual-to-physical mapping into the TLB,
Disco emulates this operation by translating the physical ad-
dress into the corresponding machine address and inserting
this corrected TLB entry into the TLB. Once the TLB entry
has been established, memory references through this map-
ping are translated with no additional overhead by the pro-
cessor.

To quickly compute the corrected TLB entry, Disco
keeps a per virtual machine pmap data structure that contains
one entry for each physical page of a virtual machine. Each
pmap entry contains a pre-computed TLB entry that refer-
ences the physical page location in real memory. Disco
merges that entry with the protection bits of the original en-
try before inserting it into the TLB. The pmap entry also con-
tains backmaps pointing to the virtual addresses that are used
to invalidate mappings from the TLB when a page is taken
away from the virtual machine by the monitor.

On MIPS processors, all user mode memory references
must be translated by the TLB but kernel mode references
used by operating systems may directly access physical
memory and I/O devices through the unmapped segment of
the kernel virtual address space. Many operating systems
place both the operating system code and data in this seg-
ment. Unfortunately, the MIPS architecture bypasses the
TLB for this direct access segment making it impossible for
Disco to efficiently remap these addresses using the TLB.
Having each operating system instruction trap into the mon-
itor would lead to unacceptable performance. We were there-
fore required to re-link the operating system code and data to
a mapped region of the address space. This problem seems
unique to MIPS as other architectures such as Alpha can
remap these regions using the TLB.

The MIPS processors tag each TLB entry with an ad-

dress space identifier (ASID) to avoid having to flush the
TLB on MMU context switches. To avoid the complexity of
virtualizing the ASIDs, Disco flushes the machine’s TLB
when scheduling a different virtual CPU on a physical pro-
cessor. This approach speeds up the translation of the TLB
entry since the ASID field provided by the virtual machine
can be used directly.

A workload executing on top of Disco will suffer an in-
creased number of TLB misses since the TLB is additionally
used for all operating system references and since the TLB
must be flushed on virtual CPU switches. In addition, each
TLB miss is now more expensive because of the emulation
of the trap architecture, the emulation of privileged instruc-
tions in the operating systems’s TLB-miss handler, and the
remapping of physical addresses described above. To lessen
the performance impact, Disco caches recent virtual-to-ma-
chine translations in a second-level software TLB. On each
TLB miss, Disco’s TLB miss handler first consults the sec-
ond-level TLB. If it finds a matching virtual address it can
simply place the cached mapping in the TLB, otherwise it
forwards the TLB miss exception to the operating system
running on the virtual machine. The effect of this optimiza-
tion is that virtual machines appear to have much larger
TLBs than the MIPS processors.

4.2.3 NUMA Memory Management

Besides providing fast translation of the virtual machine’s
physical addresses to real machine pages, the memory man-
agement part of Disco must also deal with the allocation of
real memory to virtual machines. This is a particularly im-
portant task on ccNUMA machines since the commodity op-
erating system is depending on Disco to deal with the non-
uniform memory access times. Disco must try to allocate
memory and schedule virtual CPUs so that cache misses gen-
erated by a virtual CPU will be satisfied from local memory
rather than having to suffer the additional latency of a remote
cache miss. To accomplish this, Disco implements a dynam-
ic page migration and page replication system [2,7] that
moves or replicates pages to maintain locality between a vir-
tual CPU’s cache misses and the memory pages to which the
cache misses occur.

Disco targets machines that maintain cache-coherence
in hardware. On these machines, NUMA management, im-
plemented either in the monitor or in the operating system, is
not required for correct execution, but rather an optimization
that enhances data locality. Disco uses a robust policy that
moves only pages that will likely result in an eventual per-
formance benefit [26]. Pages that are heavily accessed by
only one node are migrated to that node. Pages that are pri-
marily read-shared are replicated to the nodes most heavily
accessing them. Pages that are write-shared are not moved
because they fundamentally cannot benefit from either mi-
gration or replication. Disco’s policy also limits the number
of times a page can move to avoid excessive overheads.

Disco’s page migration and replication policy is driven

Page 7Disco: Running Commodity Operating Systems on Scalable Multiprocessors

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

by the cache miss counting facility provided by the FLASH
hardware. FLASH counts cache misses to each page from
every physical processor. Once FLASH detects a hot page,
the monitor chooses between migrating and replicating the
hot page based on the cache miss counters. To migrate a
page, the monitor transparently changes the physical-to-ma-
chine mapping. It first invalidates any TLB entries mapping
the old machine page and then copies the data to a local ma-
chine page. To replicate a page, the monitor must first down-
grade all TLB entries mapping the machine page to ensure
read-only accesses. It then copies the page to the local node
and updates the relevant TLB entries mapping the old ma-
chine page. The resulting configuration after replication is
shown in Figure 2.

Disco maintains a memmap data structure that contains
an entry for each real machine memory page. To perform the
necessary TLB shootdowns during a page migration or rep-
lication, the memmap entry contains a list of the virtual ma-
chines using the page and the virtual addresses used to access
them. A memmap entry also contains pointers to any repli-
cated copies of the page.

4.2.4 Virtual I/O Devices

To virtualize access to I/O devices, Disco intercepts all
device accesses from the virtual machine and eventually for-
wards them to the physical devices. Disco could interpose on
the programmed input/output (PIOs) from the operating sys-
tem device drivers by trapping into the monitor and emulat-
ing the functionality of the hardware device assumed by the
version of the operating system we used. However we found
it was much cleaner to simply add special device drivers into
the operating system. Each Disco device defines a monitor
call used by the device driver to pass all command argu-
ments in a single trap.

Devices such as disks and network interfaces include a
DMA map as part of their arguments. Disco must intercept
such DMA requests to translate the physical addresses spec-

Physical Pages

Machine Pages

Virtual Pages

VCPU 0 VCPU 1

Node 0 Node 1

FIGURE 2. Transparent Page Replication. Disco uses the physical to machine mapping to replicate user and kernel
pages. Virtual pages from VCPUs 0 and 1 of the same virtual machine both map the same physical page of their virtual
machine. However, Disco transparently maps each virtual page to a machine page replica that is located on the local node.

ified by the operating systems into machine addresses. Dis-
co’s device drivers then interact directly with the physical
device.

For devices accessed by a single virtual machine, Disco
only needs to guarantee the exclusivity of this access and
translate the physical memory addresses of the DMA, but
does not need to virtualize the I/O resource itself.

The interposition on all DMA requests offers an oppor-
tunity for Disco to share disk and memory resources among
virtual machines. Disco’s copy-on-write disks allow virtual
machines to share both main memory and disk storage re-
sources. Disco’s virtual network devices allow virtual ma-
chines to communicate efficiently. The combination of these
two mechanisms, detailed in Section 4.2.5 and Section 4.2.6,
allows Disco to support a system-wide cache of disk blocks
in memory that can be transparently shared between all the
virtual machines.

4.2.5 Copy-on-write Disks

Disco intercepts every disk request that DMAs data into
memory. When a virtual machine requests to read a disk
block that is already in main memory, Disco can process the
request without going to disk. Furthermore, if the disk re-
quest is a multiple of the machine’s page size, Disco can pro-
cess the DMA request by simply mapping the page into the
virtual machine’s physical memory. In order to preserve the
semantics of a DMA operation, Disco maps the page read-
only into the destination address page of the DMA. Attempts
to modify a shared page will result in a copy-on-write fault
handled internally by the monitor.

Using this mechanism, multiple virtual machines ac-
cessing a shared disk end up sharing machine memory. The
copy-on-write semantics means that the virtual machine is
unaware of the sharing with the exception that disk requests
can finish nearly instantly. Consider an environment running
multiple virtual machines for scalability purposes. All the
virtual machines can share the same root disk containing the

Page 8Disco: Running Commodity Operating Systems on Scalable Multiprocessors

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

kernel and application programs. The code and other read-
only data stored on the disk will be DMA-ed into memory by
the first virtual machine that accesses it. Subsequent requests
will simply map the page specified to the DMA engine with-
out transferring any data. The result is shown in Figure 3
where all virtual machines share these read-only pages. Ef-
fectively we get the memory sharing patterns expected of a
single shared memory multiprocessor operating system even
though the system runs multiple independent operating sys-
tems.

To preserve the isolation of the virtual machines, disk
writes must be kept private to the virtual machine that issues
them. Disco logs the modified sectors so that the copy-on-
write disk is never actually modified. For persistent disks,
these modified sectors would be logged in a separate disk
partition managed by Disco. To simplify our implementa-
tion, we only applied the concept of copy-on-write disks to
non-persistent disks and kept the modified sectors in main
memory whenever possible.

The implementation of this memory and disk sharing
feature of Disco uses two data structures. For each disk de-
vice, Disco maintains a B-Tree indexed by the range of disk
sectors being requested. This B-Tree is used to find the ma-
chine memory address of the sectors in the global disk cache.
A second B-Tree is kept for each disk and virtual machine to
find any modifications to the block made by that virtual ma-
chine. We used B-Trees to efficiently support queries on
ranges of sectors [6].

The copy-on-write mechanism is used for file systems
such as the root disk whose modifications as not intended to
be persistent or shared across virtual machines. For persis-
tent disks such as the one containing user files, Disco enforc-
es that only a single virtual machine can mount the disk at
any given time. As a result, Disco does not need to virtualize
the layout of the disk. Persistent disks can be accessed by
other virtual machines through a distributed file system pro-
tocol such as NFS.

4.2.6 Virtual Network Interface

The copy-on-write mechanism for disks allows the sharing
of memory resources across virtual machines, but does not

FIGURE 3. Transparent Sharing of Pages. Read only pages brought in from disk such as the kernel text and the buffer
cache can be transparently shared between virtual machines. This creates a global buffer cache shared across virtual ma-
chines and helps reduce the memory footprint of the system.

Shared Pages

Private Pages
Buffer CacheCode DataCode Data Buffer Cache

Machine Memory

Code Buffer Cache DataData

Physical Memory of VM 1 Physical Memory of VM 2

Free Pages

allow virtual machines to communicate with each other. To
communicate, virtual machines use standard distributed pro-
tocols. For example, virtual machines share files through
NFS. As a result, shared data will end up in both the client’s
and server’s buffer cache. Without special attention, the data
will be duplicated in machine memory. We designed a virtu-
al subnet managed by Disco that allows virtual machines to
communicate with each other, while avoiding replicated data
whenever possible.

The virtual subnet and networking interfaces of Disco
also use copy-on-write mappings to reduce copying and to
allow for memory sharing. The virtual device uses ethernet-
like addresses and does not limit the maximum transfer unit
(MTU) of packets. A message transfer sent between virtual
machines causes the DMA unit to map the page read-only
into both the sending and receiving virtual machine’s physi-
cal address spaces. The virtual network interface accepts
messages that consist of scattered buffer fragments. Our im-
plementation of the virtual network in Disco and in the oper-
ating system’s device driver always respects the data
alignment of the outgoing message so that properly aligned
message fragments that span a complete page are always
remapped rather than copied.

Using this mechanism, a page of data read from disk
into the file cache of a file server running in one virtual ma-
chine can be shared with client programs that request the file
using standard distributed file system protocol such as NFS.
As shown in Figure 4, Disco supports a global disk cache
even when a distributed file system is used to connect the vir-
tual machines. In practice, the combination of copy-on-write
disks and the access to persistent data through the specialized
network device provides a global buffer cache that is trans-
parently shared by independent virtual machines.

As a result, all read-only pages can be shared between
virtual machines. Although this reduces the memory foot-
print, this may adversely affect data locality as most sharers
will access the page remotely. However, Disco’s page repli-
cation policy selectively replicates the few “hot” pages that
suffer the most cache misses. Pages are therefore shared
whenever possible and replicated only when necessary to
improve performance.

Page 9Disco: Running Commodity Operating Systems on Scalable Multiprocessors

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

4.3 Running Commodity Operating Systems
The “commodity” operating system we run on Disco is IRIX
5.3, a UNIX SVR4 based operating system from Silicon
Graphics. Disco is however independent of any specific op-
erating system and we plan to support others such as Win-
dows NT and Linux.

In their support for portability, modern operating sys-
tems present a hardware abstraction level (HAL) that allows
the operating system to be effectively “ported” to run on new
platforms. Typically the HAL of modern operating systems
changes with each new version of a machine while the rest
of the system can remain unchanged. Our experience has
been that relatively small changes to the HAL can reduce the
overhead of virtualization and improve resource usage.

Most of the changes made in IRIX were part of the
HAL1. All of the changes were simple enough that they are
unlikely to introduce a bug in the software and did not re-
quire a detailed understanding of the internals of IRIX. Al-
though we performed these changes at the source level as a
matter of convenience, many of them were simple enough to
be performed using binary translation or augmentation tech-
niques.

4.3.1 Necessary Changes for MIPS Architecture

Virtual processors running in supervisor mode cannot effi-
ciently access the KSEG0 segment of the MIPS virtual ad-
dress space, that always bypasses the TLB. Unfortunately,
many MIPS operating systems including IRIX 5.3 place the
kernel code and data in the KSEG0 segment. As a result, we
needed to relocate the unmapped segment of the virtual ma-

1. Unlike other operating systems, IRIX is not structured with a well-
defined HAL. In this paper, the HAL includes all the platform and
processor-specific functions of the operating system.

NFS Server NFS Client

Buffer Cache mbuf

Physical Pages

Machine Pages

Virtual Pages

21

FIGURE 4. Transparent Sharing of Pages Over NFS. This figure illustrates the case when the NFS reply, to a read re-
quest, includes a data page. (1) The monitor’s networking device remaps the data page from the source’s machine address
space to the destination’s. (2) The monitor remaps the data page from the driver’s mbuf to the clients buffer cache. This
remap is initiated by the operating system through a monitor call.

Buffer Cache

chines into a portion of the mapped supervisor segment of
the MIPS processor. This allowed Disco to emulate the di-
rect memory access efficiently using the TLB. The need for
relocating the kernel appears to be unique to MIPS and is not
present in other modern architecture such as Alpha, x86,
SPARC, and PowerPC.

Making these changes to IRIX required changing two
header files that describe the virtual address space layout,
changing the linking options, as well as 15 assembly state-
ments in locore.s. Unfortunately, this meant that we needed
to re-compile and re-link the IRIX kernel to run on Disco.

4.3.2 Device Drivers

Disco’s monitor call interface reduces the complexity and
overhead of accessing I/O devices. We implemented UART,
SCSI disks, and ethernet drivers that match this interface.
Since the monitor call interface provides the view of an ide-
alized device, the implementation of these drivers was
straightforward. Since kernels are normally designed to run
with different device drivers, this kind of change can be
made without the source and with only a small risk of intro-
ducing a bug.

The complexity of the interaction with the specific de-
vices is left to the virtual machine monitor. Fortunately, we
designed the virtual machine monitor’s internal device driv-
er interface to simplify the integration of existing drivers
written for commodity operating systems. Disco uses IRIX’s
original device drivers.

4.3.3 Changes to the HAL

Having to take a trap on every privileged register access can
cause significant overheads when running kernel code such
as synchronization routines and trap handlers that frequently
access privileged registers. To reduce this overhead, we
patched the HAL of IRIX to convert these frequently used
privileged instructions to use non-trapping load and store in-

Page 10Disco: Running Commodity Operating Systems on Scalable Multiprocessors

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

structions to a special page of the address space that contains
these registers. This optimization is only applied to instruc-
tions that read and write privileged registers without causing
other side-effects. Although for this experiment we per-
formed the patches by hand to only a few critical locations,
the patches could easily be automatically applied when the
privileged instruction first generates a trap. As part of the
emulation process, Disco could overwrite certain instruc-
tions with the special load and store so it would not suffer the
overhead of the trap again.

To help the monitor make better resource management
decisions, we have added code to the HAL to pass hints to
the monitor giving it higher-level knowledge of resource uti-
lization. We inserted a small number of monitor calls in the
physical memory management module of the operating sys-
tems. The first monitor call requests a zeroed page. Since the
monitor must clear pages to ensure the isolation of virtual
machines anyway, the operating system is freed from this
task. A second monitor call informs Disco that a page has
been put on the operating system’s freelist without a chance
of reclamation, so that Disco can immediately reclaim the
memory.

To improve the utilization of processor resources, Disco
assigns special semantics to the reduced power consumption
mode of the MIPS processor. This mode is used by the oper-
ating system whenever the system is idle. Disco will de-
schedule the virtual CPU until the mode is cleared or an
interrupt is posted. A monitor call inserted in the HAL’s idle
loop would have had the same effect.

4.3.4 Other Changes to IRIX

For some optimizations Disco relies on the cooperation of
the operating system. For example, the virtual network de-
vice can only take advantage of the remapping techniques if
the packets contain properly aligned, complete pages that are
not written. We found that the operating system’s network-
ing subsystem naturally meets most of the requirements. For
example, it preserves the alignment of data pages, taking ad-
vantage of the scatter/gather options of networking devices.
Unfortunately, IRIX’s mbuf management is such that the
data pages of recently freed mbufs are linked together using
the first word of the page. This guarantees that every packet
transferred by the monitor’s networking device using remaps
will automatically trigger at least one copy-on-write fault on
the receiving end. A simple change to the mbuf freelist data
structure fixed this problem.

The kernel implementation of NFS always copies data
from the incoming mbufs to the receiving file buffer cache,
even when the packet contained un-fragmented, properly
aligned pages. This would have effectively prevented the
sharing of the file buffer cache across virtual machines. To
have clients and servers transparently share the page, we spe-
cialized the call to bcopy to a new remap function offered by
the HAL. This remap function has the semantics of a bcopy
routine but uses a monitor call to remap the page whenever

possible. Figure 4 shows how a data page transferred during
an NFS read or write call is first remapped from the source
virtual machine to the destination memory buffer (mbuf)
page by the monitor’s networking device, and then
remapped into its final location by a call to the HAL’s remap
function.

4.4 SPLASHOS: A Specialized Operating
System
The ability to run a thin or specialized operating system al-
lows Disco to support large-scale parallel applications that
span the entire machine. These applications may not be well
served by a full function operating system. In fact, special-
ized operating systems such as Puma [24] are commonly
used to run scientific applications on parallel systems.

To illustrate this point, we developed a specialized li-
brary operating system [11], “SPLASHOS”, that runs direct-
ly on top of Disco. SPLASHOS contains the services needed
to run SPLASH-2 applications [27]: thread creation and syn-
chronization routines, “libc” routines, and an NFS client
stack for file I/O. The application is linked with the library
operating system and runs in the same address space as the
operating system. As a result, SPLASHOS does not need to
support a virtual memory subsystem, deferring all page
faulting responsibilities directly to Disco.

Although one might find SPLASHOS to be an overly
simplistic and limited operating system if it were to run di-
rectly on hardware, the ability to run it in a virtual machine
alongside commodity operating systems offers a powerful
and attractive combination.

5 Experimental Results
We have implemented Disco as described in the previous
section and performed a collection of experiments to evalu-
ate it. We describe our simulation-based experimental setup
in Section 5.1. The first set of experiments presented in Sec-
tions 5.2 and 5.3 demonstrate that Disco overcomes the tra-
ditional problems associated with virtual machines, such as
high overheads and poor resource sharing. We then demon-
strate in Sections 5.4 and 5.5 the benefits of using virtual ma-
chines, including improved scalability and data locality.

5.1 Experimental Setup and Workloads
Disco targets the FLASH machine, which is unfortunately
not yet available. As a result, we use the SimOS [22] ma-
chine simulator to develop and evaluate Disco. SimOS is a
machine simulator that models the hardware of MIPS-based
multiprocessors in enough detail to run essentially unmodi-
fied system software such as the IRIX operating system and
the Disco monitor. For this study, we configured SimOS to
resemble a large-scale multiprocessor with performance
characteristics similar to FLASH. Although SimOS contains
simulation models of FLASH’s MIPS R10000 processors,

Page 11Disco: Running Commodity Operating Systems on Scalable Multiprocessors

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

these simulation models are too slow for the workloads that
we chose to study. As a result, we model statically sched-
uled, non-superscalar processors running at twice the clock
rate. These simpler pipelines can be modelled one order of
magnitude faster than the R10000. The processors have the
on-chip caches of the MIPS R10000 (32KB split instruc-
tion/data) and a 1MB board-level cache. In the absence of
memory system contention, the minimum latency of a cache
miss is 300 nanoseconds to local memory and 900 nanosec-
onds to remote memory.

Although SimOS allows us to run realistic workloads
and examine their behavior in detail with its non-intrusive
annotation mechanism, the simulation slowdowns prevent us
from examining long running workloads in detail. Using re-
alistic but short workloads, we were able to study issues like
the CPU and memory overheads of virtualization, the bene-
fits on scalability, and NUMA memory management. How-
ever, studies that would require long running workloads,
such as those fully evaluating Disco’s resource sharing poli-
cies, are not possible in this environment and will hence have
to wait until we have a real machine.

Table 1 lists the workloads of this study together with
their base simulated execution time. The workloads were
chosen to be representative of four typical uses of scalable
compute servers. Although the simulated execution times are
small, the SimOS environment allowed us to study the work-
load’s behavior in great detail and determine that the small
execution regions exhibit similar behavior to longer-running
worklaods. We also used the fast mode of SimOS to ensure
that the workloads did not include any cold start effects.

5.2 Execution Overheads
To evaluate the overheads of running on Disco, we ran each
workload on a uniprocessor, once using IRIX directly on the
simulated hardware, and once using Disco running IRIX in a
single virtual machine on the same hardware. Figure 5 shows
this comparison. Overall, the overhead of virtualization
ranges from a modest 3% for Raytrace to a high of 16% in
the pmake and database workloads. For the compute-bound

Workload Environment Description Characteristics Execution
Time

Pmake Software Development Parallel compilation (-J2) of the
GNU chess application

Multiprogrammed, short-lived,
system and I/O intensive processes 3.9 sec

Engineering Hardware Development Verilog simulation (Chronologics
VCS) + machine simulation

Multiprogrammed, long running
processes 3.5 sec

Splash Scientific Computing Raytrace from SPLASH-2 Parallel applications 12.9 sec

Database Commercial Database Sybase Relational Database
Server decision support workload Single memory intensive process 2.0 sec

Table 1. Workloads. Each workload is scaled differently for the uniprocessor and multiprocessor experiments. The report-
ed execution time is for the uniprocessor workloads running on IRIX without Disco. The execution time does not include
the time to boot the operating, ramp-up the applications and enter a steady execution state. This setup time is at least two
orders of magnitude longer and performed using SimOS’s fast emulation mode.

engineering and Raytrace workloads, the overheads are
mainly due to the Disco trap emulation of TLB reload miss-
es. The engineering and database workloads have an excep-
tionally high TLB miss rate and hence suffer large
overheads. Nevertheless, the overheads of virtualization for
these applications are less than 16%.

The heavy use of OS services for file system and process
creation in the pmake workload makes it a particularly
stressful workload for Disco. Table 2 shows the effect of the
monitor overhead on the top OS services. From this table we
see the overheads can significantly lengthen system services
and trap handling. Short running services such as the IRIX
quick page fault handler, where the trap overhead itself is a
significant portion of the service, show slowdowns over a
factor of 3. Even longer running services such as execve and
open system call show slowdowns of 1.6.

These slowdowns can be explained by the common path

 Idle
 DISCO
 Kernel
 User

||0

|20

|40

|60

|80

|100

|120

|140

|160 |

|
|

|
|

|
|

|
|

|

 N
or

m
al

ize
d

Ex
ec

ut
io

n
Ti

m
e

IRIX

100

DISCO

116

Pmake
IRIX

100

DISCO

106

Engineering
IRIX

100

DISCO

103

Raytrace
IRIX

100

DISCO

116

Database

FIGURE 5. Overhead of Virtualization. The figure com-
pares, for four uniprocessor workloads, the execution time
when running IRIX directly on the simulated hardware with
IRIX running in a Disco virtual machine. The execution
time is separated between the time spent in user programs,
the IRIX kernel, Disco, and the idle loop.

Page 12Disco: Running Commodity Operating Systems on Scalable Multiprocessors

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

to enter and leave the kernel for all page faults, system calls
and interrupts. This path includes many privileged instruc-
tions that must be individually emulated by Disco. A restruc-
turing of the HAL of IRIX could remove most of this
overhead. For example, IRIX uses the same TLB wired entry
for different purposes in user mode and in the kernel. The
path on each kernel entry and exit contains many privileged
instructions that deal exclusively with this feature and are in-
dividually emulated.

We also notice the relatively high overhead of servicing
kernel TLB-faults that occur since Disco runs IRIX in
mapped addresses rather than the unmapped addresses used
when running directly on the machine. This version of Disco
only mapped 4KB page pairs into the TLB. The use of larger
pages, supported by the MIPS TLB, could significantly re-
duce this overhead. Even with these large slowdowns, the
operating system intensive pmake workload with its high
trap and system call rate has an overhead of only 16%.

Figure 5 also shows a reduction in overall kernel time of
some workloads. Some of the work of the operating system
is being handled directly by the monitor. The reduction in
pmake is primarily due to the monitor initializing pages on
behalf of the kernel and hence suffering the memory stall and
instruction execution overhead of this operation. The reduc-
tion of kernel time in Raytrace, Engineering and Database
workloads is due to the monitor’s second-level TLB han-
dling most TLB misses.

5.3 Memory Overheads
To evaluate the effectiveness of Disco’s transparent memory
sharing and quantify the memory overheads of running mul-

Operating System
Service

% of
System
Time

(IRIX)

Avg Time
per

Invocation
(IRIX)

Slowdown
on

Disco

Relative Execution Time on Disco

K
er

ne
l

Ex
ec

ut
io

n

TL
B

W
ri

te
Em

ul
at

io
n

O
th

er
Pr

iv
ile

ge
d

In
st

ru
ct

io
ns

M
on

ito
r C

al
ls

&
 P

ag
e

Fa
ul

ts

K
en

re
l

TL
B

Fa
ul

ts

DEMAND_ZERO 30% 21 µs 1.42 0.43 0.21 0.16 0.47 0.16
QUICK_FAULT 10% 5 µs 3.17 1.27 0.80 0.56 0.00 0.53
open 9% 42 µs 1.63 1.16 0.08 0.06 0.02 0.30
UTLB_MISS 7% 0.035 µs 1.35 0.07 1.22 0.05 0.00 0.02
write 6% 12 µs 2.14 1.01 0.24 0.21 0.31 0.17
read 6% 23 µs 1.53 1.10 0.13 0.09 0.01 0.20
execve 6% 437 µs 1.60 0.97 0.03 0.05 0.17 0.40

Table 2. Service Breakdown for the Pmake workload. This table breaks down the overheads of the virtualization for
the seven top kernel services of the pmake workload. DEMAND_ZERO is demand zero page fault, QUICK_FAULT, is
slow TLB refill, UTLB_MISS is a fast TLB refill. Other than the UTLB_MISS service, the IRIX and IRIX on Disco con-
figurations request the same number of services of each category. For each service, the execution time is expressed as a
fraction of the IRIX time and separates the time spend in the kernel, emulating TLB writes and privileged instructions, per-
forming monitor call and emulating the unmapped segments. The slowdown column is the sum of the relative execution
times and measures the average slowdown for each service.

tiple virtual machines, we use a single workload running un-
der six different system configurations. The workload
consists of eight different instances of the basic pmake work-
load. Each pmake instance reads and writes files from a dif-
ferent disk. In all configurations we use an eight processor
machine with 256 megabytes of memory and ten disks.

The configurations differ in the number of virtual ma-
chines used and the access to the workload file systems. The
first configuration (IRIX) runs IRIX on the bare hardware
with all disks local. The next four configurations split the
workload across one (1VM), two (2VMs), four (4VMs), and
eight virtual machines (8VMs). Each VM has the virtual re-
sources that correspond to an equal fraction of the physical
resources. As a result, the total virtual processor and memory
resources are equivalent to the total physical resources of the
machine, i.e. eight processors and 256 MB of memory. For
example, the 4VMs configuration consists of dual-processor
virtual machines, each with 64 MB of memory. The root disk
and workload binaries are mounted from copy-on-write
disks and shared among all the virtual machines. The work-
load file systems are mounted from different private exclu-
sive disks.

The last configuration runs eight virtual machines but
accesses workload files over NFS rather than from private
disks. One of the eight virtual machines also serves as the
NFS server for all file systems and is configured with 96
megabytes of memory. The seven other virtual machines
have only 32MB of memory. This results in more memory
configured to virtual machines than is available on the real
machine. This workload shows the ability to share the file
cache using standard distributed system protocols such as
NFS.

Page 13Disco: Running Commodity Operating Systems on Scalable Multiprocessors

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

Figure 6 compares the memory footprint of each config-
uration at the end of the workload. The virtual physical foot-
print (V) is the amount of memory that would be needed if
Disco did not support any sharing across virtual machines.
The machine footprint (M) is the amount of memory actually
needed with the sharing optimizations. Pages are divided be-
tween the IRIX data structures, the IRIX text, the file system
buffer cache and the Disco monitor itself.

Overall, we see that the effective sharing of the kernel
text and buffer cache limits the memory overheads of run-
ning multiple virtual machines. The read-shared data is kept
in a single location in memory.

The kernel private data is however not shareable across
virtual machines. The footprint of the kernel private data in-
creases with the number of virtual machines, but remains
overall small. For the eight virtual machine configuration,
the eight copies of IRIX’s data structures take less than 20
megabytes of memory.

In the NFS configuration, the virtual buffer cache is
larger than the comparable local configuration as the server
holds a copy of all workload files. However, that data is
transparently shared with the clients and the machine buffer
cache is of comparable size to the other configurations. Even
using a standard distributed file system such as NFS, Disco
can maintain a global buffer cache and avoid the memory
overheads associated with multiple caching of data.

5.4 Scalability
To demonstrate the scalability benefits of using virtual ma-
chine monitors we ran the pmake workload under the six
configurations described in the previous section. IRIX5.3 is
not a NUMA-aware kernel and tends to allocate its kernel

 DISCO
 Buffer_Cache
 IRIX_Text
 IRIX_Data

||0

|10

|20

|30

|40

|50

|60

|70

|80

|

|
|

|
|

|
|

|
|

|

 F
oo

tp
rin

t s
ize

 (M
B)

V

23

M

23

IRIX
V

27

M

27

1VM
V

36

M

29

2VMs
V

51

M

33

4VMs
V

77

M

38

8VMs
V

81

M

40

8VMs+NFS

FIGURE 6. Data Sharing in Disco. This figure compares
the memory footprints of the different configurations of
Section 5.3 which run the pmake workload. For each con-
figuration, “V” breaks down the virtual footprint of the sys-
tem and “M” and actual machine memory footprint. The
virtual footprint is equivalent to the amount of memory re-
quired in the absence of memory sharing optimizations.

data structures from a single node of FLASH causing large
hot-spots. To compensate for this, we changed the physical
memory layout of FLASH so that machine pages are allocat-
ed to nodes in a round-robin fashion. This round-robin allo-
cation eliminates hot spots and results in significantly better
performance for the IRIX runs. Since Disco is NUMA-
aware, we were able to use the actual layout of machine
memory, which allocates consecutive pages to each node. To
further simplify the comparison, we disabled dynamic page
migration and replication for the Disco runs.

Figure 7 shows the execution time of each workload.
Even at just eight processors, IRIX suffers from high syn-
chronization and memory system overheads for system-in-
tensive workloads such as this. For example, about one
quarter of the overall time is spent in the kernel synchroniza-
tion routines and the 67% of the remaining kernel time is
spent stalled in the memory system on communication miss-
es. The version of IRIX that we used has a known primary
scalability bottleneck, memlock, the spinlock that protects
the memory management data structures of IRIX [23]. Other
operating systems such as NT also have comparable scalabil-
ity problems, even with small numbers of processors [21].

Using a single virtual machine leads to higher overheads
than in the comparable uniprocessor Pmake workload. The
increase is primarily due to additional idle time. The execu-
tion of the operating system in general and of the critical re-
gions in particular is slower on top of Disco, which increases

 Idle
 DISCO
 Sync
 Kernel
 User_stall
 User

||0

|20

|40

|60

|80

|100

|120

|140

|160

|

|
|

|
|

|
|

|
|

|

 N
or

m
al

ize
d

Ex
ec

ut
io

n
Ti

m
e

IRIX

100

1VM

136

2VM

92

4VM

64

8VM

60

8VM/nfs

86

pmake
IRIX

100

SplashOS

34

RADIX

FIGURE 7. Workload Scalability Under Disco. The
performance of the pmake and radix workloads on an
eight-processor ccNUMA machine is normalized to the ex-
ecution time running IRIX on the bare hardware. Radix
runs on IRIX directly on top of the hardware and on a spe-
cialized OS (SPLASHOS) on top of Disco in a single vir-
tual machine. For each workload the execution is broken
down into user time, kernel time, time synchronization
time, monitor time, and the idle loop. All configurations
use the same physical resources, eight processors and
256MB of memory, but use a different number of virtual
machines.

Page 14Disco: Running Commodity Operating Systems on Scalable Multiprocessors

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

the contention for semaphores and spinlocks in the operating
system. For this workload, the increased idle time is due to
additional contention on certain semaphores that protect the
virtual memory subsystem of IRIX, forcing more processes
to be descheduled. This interaction causes a non-linear effect
in the overheads of virtualization.

However, partitioning the problem into different virtual
machines significantly improves the scalability of the sys-
tem. With only two virtual machines, the scalability benefits
already outweigh the overheads of the virtualization. When
using eight virtual machines, the execution time is reduced
to 60% of its base execution time, primarily because of a sig-
nificant reduction in the kernel stall time and kernel synchro-
nization.

We see significant performance improvement even
when accessing files using NFS. In the NFS configuration
we see an increase in the idle time that is primarily due to the
serialization of NFS requests on the single server that man-
ages all eight disks. Even with the overheads of the NFS pro-
tocol and the increase in idle time, this configuration
executes faster than the base IRIX time.

The other workload of Figure 7 compares the perfor-
mance of the radix sorting algorithm, one of the SPLASH-2
applications [27]. Radix has an unfortunate interaction with
the lazy evaluation policies of the IRIX virtual memory sys-
tem. IRIX defers setting up the page table entries of each par-
allel thread until the memory is touched by the thread. When
the sorting phase starts, all threads suffer many page faults
on the same region causing serialization on the various spin-
locks and semaphores used to protect virtual memory data
structures. The contention makes the execution of these traps
significant in comparison to the work Radix does for each
page touched. The result is Radix spends one half of its time
in the operating system.

Although it would not have been difficult to modify Ra-
dix to setup its threads differently to avoid this problem, oth-
er examples are not as easy to fix. Rather than modifying
Radix, we ran it on top of SPLASHOS rather than IRIX. Be-
cause it does not manage virtual memory, SPLASHOS does
not suffer from the same performance problems as IRIX.
Figure 7 shows the drastic performance improvements of
running the application in a specialized operating system (on
top of Disco) over using a full-blown operating system
(without Disco). Both configurations suffer from the same
number of page faults, whose processing accounts for most
of the system time. This system time is one order of magni-
tude larger for IRIX than it is for SPLASHOS on top of Dis-
co. The NUMA-aware allocation policy of Disco also
reduces hot spots and improves user stall time.

5.5 Dynamic Page Migration and Replication
To show the benefits of Disco’s page migration and replica-
tion implementation, we concentrate on workloads that ex-
hibit poor memory system behavior, specifically the
Engineering and Raytrace workloads. The Engineering

workload consists of six Verilog simulations and six memo-
ry system simulations on eight processors of the same virtual
machine. The Raytrace workload spans 16 processors. Be-
cause Raytrace’s largest available data set fully fits in a 1MB
cache, we ran the Raytrace experiments with a 256KB cache
to show the impact of data locality.

Figure 8 shows the overall reduction in execution time
of the workload. Each workload is run under IRIX, IRIX on
Disco with migration and replication, and IRIX on a UMA
memory system. The UMA memory system has a latency of
300ns equivalent to the local latency of the NUMA machine.
As a result, the performance on the UMA machine deter-
mines a lower bound for the execution time on the NUMA
machine. The comparison between Disco and the NUMA
IRIX run shows the benefits of page migration and replica-
tion while the comparison with the UMA IRIX run shows
how close Disco got to completely hiding the NUMA mem-
ory system from the workload.

Disco achieves significant performance improvements
by enhancing the memory locality of these workloads. The
Engineering workload sees a 33% performance improve-
ment while Raytrace gets a 38% improvement. Both user and
kernel modes see a substantial reduction in remote stall time.
Disco increases data locality by satisfying a large fraction of
the cache misses from local memory with only a small in-
crease in Disco’s overhead.

Although Disco cannot totally hide all the NUMA mem-
ory latencies from the kernel, it does greatly improve the sit-
uation. Comparing Disco’s performance with that of the
optimistic UMA where all cache misses are satisfied in 300
nanoseconds, Disco comes within 40% for the Engineering

 DISCO
 remote
 local
 exec

||0

|20

|40

|60

|80

|100

|

|
|

|
|

|
|

 N
or

m
al

ize
d

Ex
ec

ut
io

n
Ti

m
e

16%
IRIX

100

78%
DISCO

67

100%
UMA

48

Engineering

6%
IRIX

100

76%
DISCO

62

100%
UMA

49

Raytrace

FIGURE 8. Performance Benefits of Page Migration
and Replication. For each workload, the figure compares
the execution time of IRIX on NUMA, IRIX on Disco on
NUMA with page migration and replication, and IRIX on
an bus-based UMA, The execution time is divided between
instruction execution time, local memory stall time, remote
memory stall time, and Disco overhead. The percentage of
cache misses satisfied locally is shown below each bar.

Page 15Disco: Running Commodity Operating Systems on Scalable Multiprocessors

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

workload and 26% for Raytrace.
Our implementation of page migration and replication

in Disco is significantly faster than a comparable kernel
implementation [26]. This improvement is due to Disco’s
streamlined data structures and optimized TLB shootdown
mechanisms. As a result, Disco can be more aggressive in its
policy decisions and provide better data locality. Table 3
lists the frequency and latency of page migrations and repli-
cations for both workloads.

6 Related Work
We start by comparing Disco’s approach to building system
software for large-scale shared-memory multiprocessors
with other research and commercial projects that target the
same class of machines. We then compare Disco to virtual
machine monitors and to other system software structuring
techniques. Finally, we compare our implementation of dy-
namic page migration and replication with previous work.

6.1 System Software for Scalable Shared
Memory Machines
Two opposite approaches are currently being taken to deal
with the system software challenges of scalable shared-
memory multiprocessors. The first one is to throw a large OS
development effort at the problem and effectively address
these challenges in the operating system. Examples of this
approach are the Hive [5] and Hurricane [25] research proto-
types and the Cellular-IRIX system recently announced by
SGI. These multi-kernel operating systems handle the scal-
ability of the machine by partitioning resources into “cells”
that communicate to manage the hardware resources effi-
ciently and export a single system image, effectively hiding
the distributed system from the user. In Hive, the cells are
also used to contain faults within cell boundaries. In addi-
tion, these systems incorporate resource allocators and
schedulers for processors and memory that can handle the
scalability and the NUMA aspects of the machine. This ap-
proach is innovative, but requires a large development effort.

The virtual machines of Disco are similar to the cells of
Hive and Cellular-IRIX in that they support scalability and
form system software fault containment boundaries. Like
these systems, Disco can balance the allocation of resources
such as processors and memory between these units of scal-

Action
Engineering Raytrace

num / sec avg time num / sec avg time
Migration 2461 67 µs 909 102 µs

Table 3. Action taken on hot pages. This table shows the
number of migrations and replications per second and their
average latency for the two workloads.

Replication 2208 57 µs 2671 73 µs

ability. Also like these systems, Disco handles the NUMA
memory management by doing careful page migration and
replication. The benefit of Disco over the OS intensive ap-
proach is in the reduction in OS development effort. It pro-
vides a large fraction of the benefits of these systems at a
fraction of the cost. Unlike the OS-intensive approach that is
tied to a particular operating system, Disco is independent of
any particular OS, and can even support different OSes con-
currently.

The second approach is to statically partition the ma-
chine and run multiple, independent operating systems that
use distributed system protocols to export a partial single
system image to the users. An example of this approach is
the Sun Enterprise10000 machine that handles software scal-
ability and hardware reliability by allowing users to hard par-
tition the machine into independent failure units each
running a copy of the Solaris operating system. Users still
benefit from the tight coupling of the machine, but cannot
dynamically adapt the partitioning to the load of the different
units. This approach favors low implementation cost and
compatibility over innovation.

Like the hard partitioning approach, Disco only requires
minimal OS changes. Although short of providing a full sin-
gle system image, both systems build a partial single system
image using standard distributed systems protocols. For ex-
ample, a single file system image is built using NFS. A single
system administration interface is built using NIS. System
administration is simplified in Disco by the use of shared
copy-on-write disks that are shared by many virtual ma-
chines.

Yet, unlike the hard partitioning approach, Disco can
share all the resources between the virtual machines and sup-
ports highly dynamic reconfiguration of the machine. The
support of a shared buffer cache and the ability to schedule
all the resources of the machine between the virtual ma-
chines allows Disco to excel on workloads that would not
perform well with a relatively static partitioning. Further-
more, Disco provides the ability for a single application to
span all resources of the machine using a specialized scalable
OS.

Digital’s announced Galaxies operating system, a multi-
kernel version of VMS, also partitions the machine relatively
statically like the Sun machine, with the additional support
for segment drivers that allow applications to share memory
across partitions. Galaxies reserves a portion of the physical
memory of the machine for this purpose. A comparable im-
plementation of application-level shared memory between
virtual machines would be simple and would not require hav-
ing to reserve memory in advance.

Disco is a compromise between the OS-intensive and
the OS-light approaches. Given an infinite OS development
budget, the OS is the right place to deal with issues such as
resource management. The high-level knowledge and great-
er control available in the operating system can allow it to
export a single system image and develop better resource

Page 16Disco: Running Commodity Operating Systems on Scalable Multiprocessors

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

management mechanisms and policies. Fortunately, Disco is
capable of gradually getting out of the way as the OS im-
proves. Operating systems with improved scalability can just
request larger virtual machines that manage more of the ma-
chine’s resources. Disco provides an adequate and low-cost
solution that enables a smooth transition and maintains com-
patibility with commodity operating systems.

6.2 Virtual Machine Monitors
Disco is a virtual machine monitor that implements in soft-
ware a virtual machine identical to the underlying hardware.
The approach itself is far from being novel. Golberg’s 1974
survey paper [13] lists over 70 research papers on the topic
and IBM’s VM/370 [15] system was introduced in the same
period. Disco shares the same approach and features as these
systems, and includes many of the same performance opti-
mizations as VM/370 [8]. Both allow the simultaneous exe-
cution of independent operating systems by virtualizing all
the hardware resources. Both can attach I/O devices to single
virtual machines in an exclusive mode. VM/370 mapped vir-
tual disks to distinct volumes (partitions), whereas Disco has
the notion of shared copy-on-write disks. Both systems sup-
port a combination of persistent disks and temporary disks.
Interestingly, Creasy argues in his 1981 paper that the tech-
nology developed to interconnect virtual machines will later
allow the interconnection of real machines [8]. The opposite
occurred and Disco benefits today from the advances in dis-
tributed systems protocols.

The basic approach used in Disco as well as many of its
performance optimizations were present in VM/370 and oth-
er virtual machines. Disco differs in its support of scalable
shared-memory multiprocessors, handling of modern operat-
ing systems, and the transparent sharing capabilities of copy-
on-write disks and the global buffer cache.

The idea of virtual machines remains popular to provide
backward compatibility for legacy applications or architec-
tures. Microsoft’s Windows 95 operating system [16] uses
virtual machines to run older Windows 3.1 and DOS appli-
cations. Disco differs in that it runs all the system software
in a virtual machine and not just the legacy applications.
DAISY [10] uses dynamic compilation techniques to run a
single virtual machine with a different instruction set archi-
tecture than the host processor. Disco exports the same in-
struction set as the underlying hardware and can therefore
use direct execution rather than dynamic compilation.

Virtual machine monitors have been recently used to
provide fault-tolerance to sensitive applications [3]. Bres-
soud and Schneider’s system virtualizes only certain re-
sources of the machine, specifically the interrupt
architecture. By running the OS in supervisor mode, it dis-
ables direct access to I/O resources and physical memory,
without having to virtualize them. While this is sufficient to
provide fault-tolerance, it does not allow concurrent virtual
machines to coexist.

6.3 Other System Software Structuring
Techniques
As an operating system structuring technique, Disco could
be described as a microkernel with an unimaginative inter-
face. Rather than developing the clean and elegant interface
used by microkernels, Disco simply mirrors the interface of
the raw hardware. By supporting different commodity and
specialized operating systems, Disco also shares with micro-
kernels the idea of supporting multiple operating system per-
sonalities [1].

It is interesting to compare Disco with Exokernel [11], a
software architecture that allows application-level resource
management. The Exokernel safely multiplexes resources
between user-level library operating systems. Both Disco
and Exokernel support specialized operating systems such as
ExOS for the Aegis exokernel and SplashOS for Disco.
These specialized operating systems enable superior perfor-
mance since they are freed from the general overheads of
commodity operating systems. Disco differs from Exokernel
in that it virtualizes resources rather than multiplexes them,
and can therefore run commodity operating systems without
significant modifications.

The Fluke system [12] uses the virtual machine ap-
proach to build modular and extensible operating systems.
Recursive virtual machines are implemented by their nested
process model, and efficiency is preserved by allowing inner
virtual machines to directly access the underlying microker-
nel of the machine. Ford et al. show that specialized system
functions such as checkpointing and migration require com-
plete state encapsulation. Like Fluke, Disco totally encapsu-
lates the state of virtual machines, and can therefore trivially
implement these functions.

6.4 ccNUMA Memory Management
Disco provides a complete ccNUMA memory management
facility that includes page placement as well as a dynamic
page migration and page replication policy. Dynamic page
migration and replication was first implemented in operating
systems for machines that were not cache-coherent, such as
the IBM Ace [2] or the BBN Butterfly [7]. In these systems,
migration and replication is triggered by page faults and the
penalty of having poor data locality is greater due to the ab-
sence of caches.

The implementation in Disco is most closely related to
our kernel implementation in [26]. Both projects target the
FLASH multiprocessor. Since the machine supports cache-
coherency, page movement is only a performance optimiza-
tion. Our policies are derived from this earlier work. Unlike
the in-kernel implementation that added NUMA awareness
to an existing operating system, our implementation of Disco
was designed with these features in mind from the begin-
ning, resulting in lower overheads.

Page 17Disco: Running Commodity Operating Systems on Scalable Multiprocessors

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

7 Conclusions
This paper tackles the problem of developing system soft-
ware for scalable shared memory multiprocessors without a
massive development effort. Our solution involves adding a
level of indirection between commodity operating systems
and the raw hardware. This level of indirection uses another
old idea, virtual machine monitors, to hide the novel aspects
of the machine such as its size and NUMA-ness.

In a prototype implementation called Disco, we show
that many of the problems of traditional virtual machines are
no longer significant. Our experiments show that the over-
heads imposed by the virtualization are modest both in terms
of processing time and memory footprint. Disco uses a com-
bination of innovative emulation of the DMA engine and
standard distributed file system protocols to support a global
buffer cache that is transparently shared across all virtual
machines. We show how the approach provides a simple so-
lution to the scalability, reliability and NUMA management
problems otherwise faced by the system software of large-
scale machines.

Although Disco was designed to exploit shared-memory
multiprocessors, the techniques it uses also apply to more
loosely-coupled environments such as networks of worksta-
tions (NOW). Operations that are difficult to retrofit into
clusters of existing operating systems such as checkpointing
and process migration can be easily supported with a Disco-
like monitor. As with shared-memory multiprocessors, this
can be done with a low implementation cost and using com-
modity operating systems.

This return to virtual machine monitors is driven by a
current trend in computer systems. While operating systems
and application programs continue to grow in size and com-
plexity, the machine-level interface has remained fairly sim-
ple. Software written to operate at this level remains simple,
yet provides the necessary compatibility to leverage the large
existing body of operating systems and application pro-
grams. We are interested in further exploring the use of vir-
tual machine monitors as a way of dealing with the
increasing complexity of modern computer systems.

Acknowledgments
The authors would like to thank John Chapin, John Gerth,
Mike Nelson, Rick Rashid, Steve Ofsthun, Volker
Strumpen, and our shepherd Rich Draves for their feedback.
Our colleagues Kinshuk Govil, Dan Teodosiu, and Ben
Verghese participated in many lively discussions on Disco
and carefully read drafts of the paper.

This study is part of the Stanford FLASH project, fund-
ed by ARPA grant DABT63-94-C-0054. Ed Bugnion is sup-
ported in part by an NSF Graduate Research Fellowship.
Mendel Rosenblum is partially supported by an NSF Young
Investigator Award.

References
[1] Michael J. Accetta, Robert V. Baron, William J.

Bolosky, David B. Golub, Richard F. Rashid, Avadis
Tevananian, and Michael Young. Mach: A New Kernel
Foundation for UNIX development. In Proceedings of
the Summer 86 USENIX Conference. pp. 99-112. Jun.
86.

[2] William J. Bolosky, Robert P. Fitzgerald, and Michael
L. Scott. Simple But Effective Techniques for NUMA
Memory Management. In Proceedings of the 12th Sym-
posium on Operating Systems Principles (SOSP) pp.
18-31. Dec. 1989.

[3] Thomas C. Bressoud and Fred B. Schneider. Hypervi-
sor-based Fault-tolerance. In Proceedings of the 15th
Symposium on Operating Systems Principles (SOSP).
pp. 1-11. Dec. 1995.

[4] Tony Brewer and Greg Astfalk. The evolution of the
HP/Convex Exemplar. In Proceedings of COMPCON
Spring ‘97. pp. 81-96. 1997

[5] John Chapin, Mendel Rosenblum, Scott Devine,
Tirthankar Lahiri, Dan Teodosiu, and Anoop Gupta.
Hive: Fault containment for shared-memory Multipro-
cessors. In Proceedings of the 15th Symposium on
Operating Systems Principles (SOSP), pp. 12-25. Dec.
1995.

[6] Thomas H. Cormen, Charles E. Leiserson and Ronald
L. Rivest. Introduction to Algorithms. McGraw-Hill.
1990.

[7] Alan L. Cox and Robert J. Fowler. The Implementation
of a Coherent Memory Abstraction on a NUMA Multi-
processor: Experiences with Platinum. In Proceedings
of the 12th Symposium on Operating Systems Princi-
ples (SOSP), pp. 32-44. Dec. 1989.

[8] R. J. Creasy. The Origin of the VM/370 Time-Sharing
System. IBM J. Res. Develop 25(5) pp. 483-490, 1981.

[9] Helen Custer. Inside Windows NT. Microsoft Press.
1993.

[10] Kermal Ebcioglu and Erik R. Altman. DAISY:
Dynamic Compilation for 100% Architectural Compat-
ibility. In Proceedings of the 24th International Sympo-
sium on Computer Architecture (ISCA). pp. 26-37. Jun.
1997.

[11] Dawson R. Engler, M. Frans Kaashoek, and J. O’Toole
Jr. Exokernel: An Operating System Architecture for
Application-level Resource Management. In Proceed-
ings of the 15th Symposium on Operating Systems Prin-
ciples (SOSP) pp. 251-266. Dec. 1995.

Page 18Disco: Running Commodity Operating Systems on Scalable Multiprocessors

Proceedings of the 16th Symposium on Operating Systems Principles (SOSP). Saint-Malo, France. October 1997.

[12] Bryan Ford, Mike Hibler, Jay Lepreau, Patrick Tull-
mann, Godmar Back, Stephen Clawson. Microkernels
meet Recursive Virtual Machines. In Proceedings of
the 2nd Symposium on Operating System Design and
Implementation (OSDI). pp. 137-151. Oct. 1996.

[13] Robert P. Goldberg. Survey of Virtual Machine
Research. IEEE Computer Magazine 7(6), pp. 34-45,
Jun. 1974.

[14] Maurice Herlihy. Wait-free synchronization. In ACM
Transactions on Programming Languages and Systems
(TOPLAS) 13(1) pp. 124-149. Jan. 1991.

[15] IBM Corporation. IBM Virtual Machine /370 Planning
Guide. 1972.

[16] Adrian King. Inside Windows 95, Microsoft Press,
1995.

[17] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Hei-
nlein, Richard Simoni, Kourosh Gharachorloo, John
Chapin, David Nakahira, Joel Baxter, Mark Horowitz,
Anoop Gupta, Mendel Rosenblum, and John Hennessy.
The Stanford FLASH Multiprocessor. In Proceedings
of the 21st International Symposium on Computer
Architecture (ISCA), pp. 302-313, Apr. 1994.

[18] Jim Laudon and Daniel Lenoski. The SGI Origin: A
ccNUMA Highly Scalable Server. In Proceedings of
the 24th International Symposium on Computer Archi-
tecture (ISCA). pp. 241-251. Jun. 1997.

[19] Tom Lovett and Russel Clapp. STiNG: A CC-NUMA
Computer System for the Commercial Marketplace. In
Proceedings of the 23rd International Symposium on
Computer Architecture (ISCA). pp. 308-317. Jun. 1996.

[20] Mike Perez, Compaq Corporation. Interview “Scalable
hardware evolves, but what about the network OS?”
PCWeek. Dec. 1995.

[21] Sharon E. Perl and Richard L. Sites. Studies of Win-
dows NT using Dynamic Execution Traces. In Pro-
ceedings of the 2nd Symposium on Operating System
Design and Implementation (OSDI), pp. 169-183. Oct.
1996.

[22] Mendel Rosenblum, Edouard Bugnion, Scott Devine
and Steve Herrod. Using the SimOS Machine Simula-
tor to study Complex Computer Systems, ACM Trans-
actions on Modelling and Computer Simulation
(TOMACS), 7(1), pp. 78-103. Jan. 1997.

[23] Mendel Rosenblum, Edouard Bugnion, Steven A. Her-
rod, Emmett Witchel and Anoop Gupta. The Impact of
Architectural Tends on Operating System Performance.
In Proceedings of the 15th Symposium on Operating
Systems Principles (SOSP), pp. 285-298. Dec. 1995.

[24] Lance Shuler, Chu Jong, Rolf Riesen, David van
Dresser, A. B. Maccabe, L.A. Fisk and T.M. Stallcup.
The Puma Operating System for Massively Parallel
Computers. In Proceedings of the Intel Supercomputer
User Group Conference, 1995.

[25] Ron Unrau, Orran Krieger, Benjamin Gamsa and
Michael Stumm. Hierarchical Clustering: A Structure
for Scalable Multiprocessor Operating System Design.
Journal of Supercomputing, 9(1), pp. 105-134. 1995.

[26] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel
Rosenblum. Operating System Support for Improving
Data Locality on CC-NUMA Compute Servers. In Pro-
ceedings of the 7th International Conference on Archi-
tectural Support for Programming Languages and
Operating Systems (ASPLOS), pp. 279-289. Oct. 1996.

[27] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie,
Jaswinder Pal Singh, and Anoop Gupta. The SPLASH-
2 programs: Characterization and Methodological Con-
siderations. In Proceeedings of the 22nd Annual Inter-
national Symposium on Computer Architecture (ISCA),
pp. 24-36. May 1995.

