
Abstract
Current system loggers have two problems: they depend on the integrity of the operating system being logged, and
they do not save sufficient information to replay and analyze attacks that include any non-deterministic events. ReVirt
removes the dependency on the target operating system by moving it into a virtual machine and logging below the
virtual machine. This allows ReVirt to replay the system’s execution before, during, and after an intruder compro-
mises the system, even if the intruder replaces the target operating system. ReVirt logs enough information to replay
a long-term execution of the virtual machine instruction-by-instruction. This enables it to provide arbitrarily detailed
observations about what transpired on the system, even in the presence of non-deterministic attacks and executions.
ReVirt adds reasonable time and space overhead. Overheads due to virtualization are imperceptible for interactive use
and CPU-bound workloads, and 13-58% for kernel-intensive workloads. Logging adds 0-8% overhead, and logging
traffic for our workloads can be stored on a single disk for several months.

1. Introduction

Improving the security of today’s computer sys-
tems is an urgent and difficult problem. The complexity
and rapid rate of change in current software systems
prevents developers from verifying or auditing their
code thoroughly enough to eliminate vulnerabilities. As
a result, even the most diligent system administrators
have to cope routinely with computer break-ins. This
situation is likely to continue for the foreseeable
future—statistics from the CERT® Coordination Center
show a steady increase over the past 4 years in the num-
ber of incidents handled, the number of vulnerabilities
reported, and the number of advisories posted [CER02].

The infeasibility of preventing computer compro-
mises makes it vital to analyze attacks after they occur.
Post-attack analysis is used to understand an attack, fix
the vulnerability that allowed the compromise, and
repair any damage caused by the intruder. Most com-
puter systems try to enable this type of analysis by log-
ging various events [Anderson80]. A typical Unix
installation may record login attempts, mail processing
events, TCP connection requests, file system mount
requests, and commands issued by the superuser. Win-
dows 2000 can record login/logoff events, file accesses,
process start/exit events, security policy changes, and
restart/shutdown events. Unfortunately, the audit logs

provided by current systems fall short in two ways of
what is needed: integrity and completeness.

Current system loggers lack integrity because they
assume the operating system kernel is trustworthy;
hence they are ineffective against attackers who com-
promise the operating system. One way current loggers
trust the operating system is by keeping their logs on the
local file system; this allows attackers who compromise
the kernel to hide their activities by deleting past log
records [CER01a]. Even if the existing log files are kept
safely on another computer or on write-once media,
attackers can forge misleading log records or prevent
useful log records from being saved after they compro-
mise the operating system. The absence of useful log
records after the point of compromise makes it very dif-
ficult to assess and fix the damage incurred in the attack.
It is ironic that current loggers work best when the ker-
nel is not compromised, since audit logs are intended to
be used when the system has been compromised!

Villains can attack kernels in many ways. The eas-
iest way is to leverage the capabilities that the kernel
provides to the superuser account. An attacker who has
gained superuser privileges can change the kernel by
writing to the physical memory through a special device
(/dev/mem on Unix), by inserting a dynamically loaded
kernel module, or by overwriting the boot sector or ker-
nel image on disk. If an administrator has turned off
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these capabilities, an attacker can instead exploit a bug
in the kernel itself. Kernels are large and complex and so
tend to contain many bugs. In fact, a recent study used
an automated tool to find over 100 security vulnerabili-
ties in Linux and OpenBSD [Ashcraft02].

Current system loggers also lack completeness
because they do not log sufficient information to recre-
ate or understand all attacks. Typical loggers save only a
few types of system events, and these events are often
insufficient to determine with certainty how the break-in
occurred or what damage was inflicted after the break-
in. Instead, the administrator is left to guess what might
have happened, and this is a painful and uncertain task.
The attack analysis published by the Honeynet project
typifies this uncertainty by containing numerous phrases
such as “may indicate the method”, “it seems reasonable
to assume”, “appears to”, “likely edited”, “presumably
to”, and “not clear what service was used” [Hon00].

More secure installations may log all inputs into
the system, such as network activity or keyboard input.
However, even such extensive logging does not enable
an administrator to re-create attacks that involve non-
deterministic effects. Many attacks exploit the unin-
tended consequences of non-determinism (e.g. time-of-
check to time-of-use race conditions [Bishop96])—
recent advisories have described non-deterministic
exploits in the Linux kernel, Microsoft Java VM,
FreeBSD, NetBSD, kerberos, ssh, Tripwire, KDE, and
Windows Media Services. Furthermore, the effects of
non-deterministic events tend to propagate, so it
becomes impossible to re-create or analyze a large class
of events without replaying all earlier events determinis-
tically. Encryption is a good example of this: encryption
algorithms use non-deterministic events to generate
entropy when choosing cryptographic keys, and all
future communication depends on the value of the these
keys. Without logging non-deterministic events,
encrypted communication can be decrypted only if the
attacker forgets to delete the key.

The goal of ReVirt is to solve the two problems
with current audit logging. To improve the integrity of
the logger, ReVirt encapsulates the target system (both
operating system and applications) inside a virtual
machine, then places the logging software beneath this
virtual machine. Running the logger in a different
domain than the target system protects the logger from a
compromised application or operating system. ReVirt
continues to log the actions of intruders even if they
replace the target boot block or the target kernel.

To improve the completeness of the logger, ReVirt
adapts techniques used in fault-tolerance for primary-

backup recovery [Elnozahy02], such as checkpointing,
logging, and roll-forward recovery. ReVirt is able to
replay the complete, instruction-by-instruction execu-
tion of the virtual machine, even if that execution
depends on non-deterministic events such as interrupts
and user input. An administrator can use this type of
replay to answer arbitrarily detailed questions about
what transpired before, during, and after an attack.

2. Virtual machines

A virtual-machine monitor (VMM) is a layer of
software that emulates faithfully the hardware of a com-
plete computer system (Figure 1) [Goldberg74]. The
abstraction created by the virtual machine monitor is
called a virtual machine. The hardware emulated by the
VMM is very similar (often identical) to the hardware
on which the VMM is running, so the same operating
systems and applications that run on the physical
machine can run on the virtual machine. The host plat-
form that the VMM runs on can be another operating
system (the host operating system) or the bare hardware.
The operating system running in the virtual machine is
called the guest operating system to distinguish it from
the host operating system running on the bare hardware.
The applications running on top of the guest operating
system are called guest applications to distinguish them
from applications running on the host operating system
(of which the VMM is one). The VMM runs in a sepa-
rate domain from the guest operating system and appli-
cations; for example, the VMM may run in kernel mode
and the guest software may run in user mode.

Our research group (CoVirt) is interested in
enhancing security by running the target operating sys-
tem and all target services inside a virtual machine
(making them guest operating system and applications),
then adding security services in the VMM or host plat-
form [Chen01].

Of course, even the VMM may be subject to secu-
rity breaches. Fortunately, the VMM makes a much bet-
ter trusted computing base than the guest operating
system, due to its narrow interface and small size. The

Figure 1: Virtual-machine structure.
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interface provided by the VMM is identical or similar to
the physical hardware (CPU, memory, disks, network
card, monitor, keyboard, mouse), whereas the interface
provided by a typical operating system is much richer
(processes, virtual memory, files, sockets, GUIs). The
narrow VMM interface restricts the actions of an
attacker. In addition, the simpler abstractions provided
by a VMM lead to a code size that is several orders of
magnitude smaller than a typical operating system, and
this smaller code size makes it easier to verify the
VMM. As we will see, the narrow interface of the VMM
also makes it easier to log and replay.

Virtual machines can be classified by how similar
they are to the host hardware. At one extreme, tradi-
tional virtual machines such as IBM’s VM/370
[Goldberg74] and VMware [Sugerman01] export an
interface that is backward compatible with the host
hardware (the interface is either identical or slightly
extended). Operating systems and applications that were
intended to run on the host platform can run on these
VMMs without change. At the other extreme, language-
level virtual machines like the Java VM export an inter-
face that is completely different from the host hardware.
These VMMs can run only operating systems and appli-
cations written specifically for them.

Other virtual machines such as the VAX VMM
security kernel [Karger91] fall somewhere in the mid-
dle—they export an interface that is similar but not iden-
tical to the host hardware [Bellino73]. These types of
VMMs typically deviate from the host hardware inter-
face when interacting with peripherals. Virtualizing the
register interface to peripherals controllers is difficult
and time consuming, so many virtual machines provide
higher-level methods to invoke I/O. A guest operating
system must be ported to run on these VMMs. Specifi-
cally, the device drivers in the guest kernel must use the
higher-level methods in the VMM; e.g. a disk device
driver might use the host system calls read and write
to access the virtual hard disk. The work required to port
a guest operating system to these types of VMMs is sim-
ilar to that done by device manufacturers who write
drivers for their devices.

3. UMLinux
ReVirt uses a virtual machine called UMLinux

[Buchacker01].1 UMLinux falls in the last category of
virtual machines; the VMM in UMLinux exports an
interface that is similar but not identical to the host hard-
ware. The version of UMLinux described and used in

this paper is modified from code developed by research-
ers at the University of Erlangen-Nürnberg. Our version
of the UMLinux VMM uses custom optimizations in the
underlying operating system to achieve an order of mag-
nitude speedup over the original UMLinux [King02].

3.1. UMLinux structure and operation

The virtual machine in UMLinux runs as a user
process on the host. Both the guest operating system and
all guest applications run inside this single host process
(the virtual-machine process). The guest operating sys-
tem in UMLinux runs on top of the host operating sys-
tem and uses host services (e.g. system calls and
signals) as the interface to peripheral devices (Figure 2).
We call this virtualization strategy OS-on-OS, and we
call the normal structure where target applications run
directly on the host operating system direct-on-host.
The guest operating system used in this paper is Linux
2.4.18, and the host operating system is also Linux
2.4.18.2

The VMM in our version of UMLinux is imple-
mented as a loadable module in the host Linux kernel,
plus some hooks in the kernel that invoke our VMM
module. The VMM module is called before and after
each signal and system call to/from the virtual-machine
process.

Most instructions executed within the virtual
machine execute directly on the host CPU. Memory
accesses are translated by the host’s MMU based on

1. Note that UMLinux is different from the similarly-named
User-Mode Linux [Dike00].

2. The guest and host operating systems can also be different.
We use the same operating system for guest and host to enable
a more direct comparison between running applications on the
UMLinux guest and running applications directly on the host.

Figure 2: UMLinux OS-on-OS structure. Our version of
UMLinux is implemented as a loadable kernel module in the
host operating system. The device and interrupt drivers in the
guest operating system use host services such as system calls
and signals.
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translations that are set up via the host operating sys-
tem’s mmap, munmap, and mprotect system calls.

Figure 3 shows the address space of the virtual-
machine process. Host memory protections are used to
prevent guest applications from accessing the guest ker-
nel’s address space.

UMLinux provides a software analog to each
peripheral device in a normal computer system. Table 1
shows the mapping from each host component or event
to its software analog in the virtual machine. UMLinux
uses a host file or raw device to emulate the hard disk,
CD-ROM, and floppy. Our version of UMLinux uses the
TUN/TAP virtual Ethernet device in Linux to emulate
the network card. UMLinux uses a small X application
on the host to display console output and read keyboard
input; this application communicates with the guest ker-
nel’s console driver via TCP. UMLinux uses no video
card; instead it displays graphical output to a remote X
server (which would typically be the host’s X server).

UMLinux provides a software analog to the com-
puter’s current privilege level. The VMM module main-
tains a virtual privilege level, which is set to kernel

when transferring control to the guest kernel, and is set
to user when transferring control to a guest application.
The VMM module uses the current virtual privilege
level to distinguish between system calls issued by a
guest application and system calls issued by the guest
kernel.

System calls issued by a guest application must be
redirected to the guest kernel’s system-call trap handler.
When a guest application executes a system-call instruc-
tion (int 0x80), the host CPU traps to the host ker-
nel’s system-call handler, which then transfers control to
the VMM kernel module. If the current virtual privilege
level is set to kernel, then the VMM knows the guest
kernel made the system call (typically to access a host
device or change memory translations). In this case, the
VMM checks that this system call is one that a
UMLinux guest kernel is expected to make, then passes
it through to the host kernel. If the virtual privilege level
is set to user, then the VMM knows a guest application
made the system call. In this case, the VMM module
notifies the guest kernel by sending it a signal
(SIGUSR1). The VMM module passes the registers at
the time of the trap to the guest kernel’s signal handler.
The SIGUSR1 signal handler in the guest kernel is the

Figure 3: UMLinux address space. As with all Linux
processes, the host kernel address space occupies
[0xc0000000, 0xffffffff], and the host user address space
occupies [0x0, 0xc0000000). The guest kernel occupies the
upper portion of the host user space [0x70000000,
0xc0000000), and the current guest application occupies the
remainder of the host user space [0x0, 0x70000000).

guest application
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0x6fffffff
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Table 1: Mapping between host components and
UMLinux equivalents.

Host component or
event

Emulation mecha-
nism in UMLinux

hard disk host raw partition
CD-ROM host /dev/cdrom

floppy disk host /dev/floppy

network card TUN/TAP virtual
Ethernet device

console TCP to host
application

video card none (display to
remote X server)

current privilege level VMM variable
system calls SIGUSR1 signal

timer interrupts timer + SIGALRM
signal

I/O device interrupts SIGIO signal
memory exception SEGV signal

enable/disable interrupts mask signals



equivalent of the system-call trap handler in a normal
operating system.

SIGALRM, SIGIO, and SIGSEGV signals are
used to emulate the hardware timer, I/O device inter-
rupts, and memory exceptions. As with SIGUSR1, the
host kernel delivers these signals to the registered signal
handler in the guest kernel. These signal handlers are the
equivalent of the timer-interrupt, I/O-interrupt, and
memory exception handlers in a normal operating sys-
tem.

UMLinux emulates the enabling and disabling of
interrupts by masking signals (using the sigproc-
mask system call).

3.2. Trusted computing base for UMLinux

All the virtualization strategies described in Sec-
tion 2 depend on the trustworthiness of all layers below
the guest operating system (the VMM and host platform
in Figure 1). For UMLinux, the trusted computing base
(TCB) is comprised of the VMM kernel module and the
host operating system. UMLinux’s TCB is larger than
the TCB for virtual machines that run directly on the
hardware, such as IBM’s VM/370 or VMware’s ESX
Server. UMLinux’s TCB is similar to other virtual
machines that cooperate with a host operating system,
such as VMware Workstation.

A common question is whether a security service
that is added to the host operating system in an OS-on-
OS structure is more protected from attack than a secu-
rity service that is added to the host operating system in
a direct-on-host structure. For example, while the log-
ging in an OS-on-OS structure does not depend on the
integrity of the guest operating system, doesn’t it still
depend on the integrity of the host operating system?

We contend that the logging in an OS-on-OS struc-
ture is much more difficult to attack than the logging in
a direct-on-host structure, because the TCB for an OS-
on-OS structure can be much smaller than the complete
host operating system [Meushaw00]. While both OS-
on-OS and direct-on-host depend on the host operating
system, the avenues a villain can use to attack the host
differ greatly between the two structures.

Assume for this comparison that the villain has
gained control over all target applications and can send
arbitrary network packets to the host. A villain can
launch attacks against the host operating system from
two directions. First, a villain can attack from above by
causing application processes to invoke the host operat-
ing system in dangerous ways. In a direct-on-host struc-

ture, the attacker has complete freedom to invoke
whatever functionality the host operating system makes
available to user processes. The attacker can control
multiple application processes, access multiple files, and
issue arbitrary system calls. In an OS-on-OS structure,
an attacker who has gained control of all application
processes can use these same avenues to attack the guest
operating system. However, even if the attacker gains
control over the guest operating system, he/she is still
severely restricted in the actions he/she can take against
the host operating system. The guest kernel needs only a
small subset of the functionality available to general-
purpose host processes, and the VMM can easily disal-
low functionality outside this subset [Goldberg96]. For
example, an attacker who has gained control over all tar-
get applications and the guest operating system still con-
trols only a single host process (the virtual-machine
process), can access only a few host files/devices (the
virtual hard disk, the virtual CD-ROM, and the virtual
floppy), and can make only a few system calls.

Second, a villain can attack the low level of the
network protocol stack by sending dangerous network
packets to the host (e.g. ping-of-death). As with attacks
from above, less of the host operating system is exposed
to dangerous packets with an OS-on-OS structure than a
direct-on-host structure. Without virtual machines,
packets traverse through the entire network stack and
are delivered to applications; villains can thus craft
packets to attack any layer of the network stack. With
virtual machines, packets need only traverse a small part
of the network stack.

The portion of the host operating system included
in UMLinux’s TCB is the host OS code that the guest
kernel or incoming packets can invoke (plus the VMM,
which disallows invocations outside this portion). We
have yet to measure the size of this code rigorously, but
early indications suggest that this portion is significantly
smaller than the entire host operating system. For exam-
ple, our VMM restricts the guest kernel to use fewer
than 7% of the system calls available to general host
processes, and network traffic to the virtual machine is
processed mostly by the guest operating system’s TCP
and UDP stacks (only a small IP-layer packet filter is
used in the host operating system).

The TCB of our current UMLinux prototype,
while smaller than the complete host operating system,
is not yet as small as it could be. The host operating sys-
tem in our prototype runs other processes which could
be attacked (e.g. the X server), and network messages to
these host processes traverse the entire host network
stack. Our future work includes measuring and reducing



the size of the host operating system used to support
UMLinux. For example, we could further restrict the
system calls issued by the guest kernel to use only cer-
tain parameter values, and we could move the X server
into another virtual machine.

4. Logging and replaying UMLinux
4.1. Overview

Logging is used widely for recovering state. The
basic concept is straightforward: start from a checkpoint
of a prior state, then roll forward using the log to reach
the desired state. The type of system being recovered
determines the type of information that needs to be
logged: database logs contain transaction records, file
system logs contain file system data. Replaying a pro-
cess requires logging the non-deterministic events that
affect the process’s computation. These log records
guide the process as it re-executes (rolls forward) from a
checkpoint. Most events are deterministic (e.g. arith-
metic, memory, branch instructions) and do not need to
be logged; the process will re-execute these events in the
same way during replay as it did during logging.

Non-deterministic events fall into two categories:
time and external input. Time refers to the exact point in
the execution stream at which an event takes place. For
example, to replay an interrupt, we must log the instruc-
tion at which the interrupt occurred. External input
refers to data received from a non-logged entity, such as
a human user or another computer. External input enters
the processor via a peripheral device, such as a key-
board, mouse, or network card.

Note that output to peripherals does not affect the
replaying process and hence need not be saved (in fact,
output to peripherals will be reconstructed during
replay). Non-determinism in the micro-architectural
state (e.g. cache misses, speculative execution) also
need not be saved, unless it affects the architectural
state. Replaying a shared-memory multiprocessor
requires saving the fine-grained interleaving order of
memory operations and is outside the scope of this
paper [LeBlanc87].

4.2. ReVirt

This section describes how we apply the general
concepts of logging to enable replay of UMLinux run-
ning on x86 processors. ReVirt is implemented as a set
of modifications to the host kernel.

Before starting UMLinux, we checkpoint the state
by making a copy of its virtual disk. We currently
require replay to start from a powered-off virtual

machine, so the virtual disk comprises all state in the
virtual machine. We envision checkpointing being a rare
event (once every few days), so copying speed is not
critical.

Log records are added and saved to disk in a man-
ner similar to that used by the Linux syslogd daemon.
The VMM kernel module and kernel hooks add log
records to a circular buffer in host kernel memory, and a
user-level daemon (rlogd) consumes the buffer and
writes the data to a log file on the host.

ReVirt must log all non-deterministic events that
can affect the execution of the virtual-machine process.
Note that many non-deterministic host events do not
need to be logged, because they do not affect the execu-
tion of the virtual machine. For example, host hardware
interrupts do not affect the virtual-machine process
unless they cause the host kernel to deliver a signal to
the virtual-machine process. Likewise, the scheduling
order of other host processes does not affect the virtual-
machine process because there is no interprocess com-
munication between the virtual-machine process and
other host processes (no shared files, memory, or mes-
sages).

ReVirt does have to log asynchronous virtual inter-
rupts (synchronous exceptions like SIGSEGV are deter-
ministic and do not need to be logged). Before
delivering a SIGALRM or SIGIO host signal (represent-
ing virtual timer and I/O interrupts) to the virtual-
machine process, ReVirt logs sufficient information to
re-deliver the signal at the same point during replay. To
uniquely identify the interrupted instruction, ReVirt logs
the program counter and the number of branches exe-
cuted since the last interrupt [Bressoud96]. Because the
x86 architecture allows a block memory instruction
(repeat string) to be interrupted in the middle of its exe-
cution, we also must log the register (ecx) that stores
the number of iterations remaining at the time of the
interrupt.

x86 processors provide a hardware performance
counter that can be configured to compute the number of
branches that have executed since the last interrupt
[Int01]. The branch_retired configuration of this
performance counter on the AMD Athlon processor
counts branches, hardware interrupts (e.g. timer and net-
work interrupts), faults (e.g. page faults, memory
protection faults, FPU faults), and traps (e.g. system
calls). We use another hardware performance counter to
count the number of hardware interrupts and subtract
this from the branch_retired counter. Similarly,
we instrument the host kernel to count the number of
faults and traps and subtract this from the



branch_retired counter. We configure the
branch_retired counter to count only user-level
branches. This makes it easier to count the number of
branches precisely, because it keeps the count indepen-
dent of the code executed in the kernel interrupt han-
dlers.

In addition to logging asynchronous virtual inter-
rupts, ReVirt must also log all input from external enti-
ties. These include most virtual devices: keyboard,
mouse, network interface card, real-time clock, CD-
ROM, and floppy. Note that input from the virtual hard
disk is deterministic, because the data on the virtual hard
disk will be reconstructed and re-read during replay.
One can imagine requiring the user to re-insert the same
floppy disk or CD-ROM during replay, in which case
reads from the CD-ROM and floppy would also be
deterministic and would not need to be logged. How-
ever, we do not expect data from these sources to be a
significant portion of the log, because these data sources
are limited in speed by the user’s ability to switch
media.3

The UMLinux guest kernel reads these types of
input data by issuing host system calls recv, read,
and gettimeofday. The VMM kernel module logs
the input data by intercepting these system calls. In gen-
eral, ReVirt must log any host system call that can yield
non-deterministic results.

The x86 architecture includes a few instructions
that can return non-deterministic results, but that do not
normally trap when running in user mode. Specifically,
the x86 rdtsc (read timestamp counter) and rdpmc
(read performance monitoring counter) instructions are
difficult for us to log. To make the virtual-machine pro-
cess completely deterministic during replay, we set the
processor control register (CR4) to trap when these
instructions are executed. We remove the guest kernel’s
rdtsc instructions by replacing them with a gettim-
eofday host system call (and scaling the result); it
would also be possible to leave these calls in the guest
kernel, then trap, emulate, and log the rdtsc instruc-
tion. We disallow rdpmc in the guest kernel and guest
applications.

During replay, ReVirt prevents new asynchronous
virtual interrupts from perturbing the replaying virtual-
machine process. ReVirt plays back the original asyn-
chronous virtual interrupts using the same combination
of hardware counters and host kernel hooks that were

used during logging. ReVirt goes through two phases to
find the right instruction at which to deliver the original
asynchronous virtual interrupt. In the first phase, ReVirt
configures the branch_retired performance
counter to generate an interrupt after most (all but 128)
of the branches in that scheduling interval. In the second
phase, ReVirt uses breakpoints to stop each time it exe-
cutes the target instruction. At each breakpoint, ReVirt
compares the current number of branches with the
desired amount. The first phase executes at the same
speed as the original run and is thus faster than the sec-
ond phase, which triggers a breakpoint each time the tar-
get instruction is executed. The second phase is needed
to stop at exactly the right instruction, because the inter-
rupt generated by the branch_retired counter does
not stop execution instantaneously and may execute past
the target number of branches.

Replay can be conducted on any host with the
same processor type as the original host. Replaying on a
different host allows an administrator to minimize
downtime for the original host.

4.3. Cooperative logging

Most sources of non-determinism generate only a
small amount of log data. Keyboard and mouse input is
limited by the speed of human data entry. Interrupts are
relatively frequent, but each interrupt generates only a
few bytes of log data. Of all the sources of non-deter-
minism, only received network messages have the
potential to generate enormous quantities of log data.

We can reduce the amount of logged network data
with a simple observation: one computer’s received
message is another computer’s sent message. If the
sending computer is being logged via ReVirt, then the
receiver need not log the message data because the
sender can re-create the sent data via replay. This tech-
nique is used commonly in message-logging recovery
protocols [Elnozahy02] and can be viewed as expanding
the domain of the replay system to include other com-
puters. Thus the receiver need not log data sent from
computers that can cooperate in the replay; the receiver
need only log a unique identifier for the message (e.g.
the identity of the sending computer and a sequence
number).

Cooperative logging can reduce the amount of
logged network data dramatically in certain cases. For
example, if all computers on a LAN participate, then
only traffic from outside the LAN needs to be logged,
thus reducing the maximum log growth rate from LAN
bandwidths to WAN bandwidths.

3. If the CD-ROM is switched by an automated jukebox, then
the jukebox can participate in replay and CD-ROM reads can
be considered deterministic.



While cooperating logging can reduce log volume,
it complicates replay and requires that cooperating com-
puters trust each other to regenerate the same message
data during replay. We have not yet implemented coop-
erative logging in ReVirt.

4.4. Alternative architectures for logging
and replay

We considered several strategies for building a log-
ging/replay system before settling on the virtual-
machine approach described above. In particular, we
started by implementing a direct-on-host system, where
the host kernel logged and replayed all its host pro-
cesses. As discussed in Section 3.2, the direct-on-host
approach is not as secure as a virtual-machine approach.
We also found it to be much more difficult to log and
replay all host processes than to log and replay a virtual-
machine process. Interestingly, the narrow interface
(between UMLinux and the host kernel) that makes an
OS-on-OS approach more secure than a direct-on-host
structure also makes an OS-on-OS system easier to
replay.

The general approach for replaying a direct-on-
host system is similar to that used in ReVirt: the system
must log and replay all non-determinism. The same
types of non-determinism exist for multiple host pro-
cesses as for our virtual-machine approach (interrupt
timing, external input).

However, it is much more challenging to log and
replay a direct-on-host structure than a virtual-machine
process, because a direct-on-host structure involves
multiple host processes while an OS-on-OS approach
involves only a single host process. (While the schedul-
ing order between guest processes in UMLinux is non-
deterministic, this is an abstraction above the virtual
machine and is replayed deterministically as a result of
deterministic signal delivery to the virtual-machine pro-
cess.)

Replaying multiple host processes can be done in
two ways, both of which are problematic. First, one can
replay the communication channels between processes,
but replaying a shared-memory communication channel
requires complex instrumentation of the executing code
and adds significant overhead [Netzer94].

Second, one can replay the scheduling order
between host processes [Russinovich96]. This strategy
is difficult because a host process can be interrupted
while executing in kernel mode (e.g. while executing a
system call). It is hard to identify the point in the kernel
where an interrupt occurred, yet identifying this point is

critical for replaying the exact scheduling order. The
hardware performance counters we used to identify the
exact interrupt point in ReVirt do not work well when
the interrupt point is in the kernel, because we configure
them to count only user-mode instructions. Configuring
them to count both user and kernel instructions also
leads to difficulties—the kernel does not execute deter-
ministically, so the instruction counts would differ dur-
ing replay.

A few solutions are possible, though none is
appealing. First, one could change the host kernel to
only allow interrupts at a few well-defined points and
log which of these points was interrupted. This would
require widespread changes to the host kernel. Second,
one could try to replay the entire host kernel. This would
require changing the interrupt handlers to log and replay
hardware interrupts, and adjusting the hardware perfor-
mance counters for the different code paths executed by
the interrupt handlers during logging and replay.

In addition to coping with scheduling order
between multiple host processes, a direct-on-host
approach must cope with a large number of non-deter-
ministic interfaces. There are a large number of system
calls, including some (e.g. ioctl) that have a very
wide variety of possible parameters. Replaying a direct-
on-host system requires one to identify, log, and replay
non-determinism in each of these system calls. In con-
trast, ReVirt only needs to handle the few systems calls
used by UMLinux.

4.5. Using ReVirt to analyze attacks

ReVirt enables an administrator to replay the com-
plete execution of a computer before, during, and after
the attack. Two types of tools can be built on this foun-
dation to assist the administrator to understand the
attack.

The first type of tool runs inside the guest virtual
machine. ReVirt supports the ability to continue live
(i.e. non-replaying) execution at any point in the replay.
An administrator can use this ability to run new guest
commands to probe the virtual machine state. For exam-
ple, the administrator can stop the replay after a suspi-
cious point and use normal guest commands to edit the
current files, list the current processes, and debug pro-
cesses. However, the virtual machine cannot switch
back to replaying after being perturbed in this manner,
because the instruction counts will not apply to the
revised state. To continue the replay beyond the per-
turbed point, the analyst should checkpoint the process
before perturbing it or start the replay over and let it
continue to the later point.



Second, tools such as debuggers and disk analyz-
ers can run outside the guest virtual machine and ana-
lyze the state of a virtual machine (address space,
registers, and disk data). The advantage of these off-line
tools is that they do not depend on the guest kernel or
guest applications. For example, an off-line tool can
inspect the contents of a directory even if the attacker
has replaced the command that normally lists the direc-
tory.

A particularly useful tool that runs outside the
guest is one that re-displays the original graphical out-
put. Recall that UMLinux uses a remote X server (per-
haps running on the host) as its graphical display. The
replaying virtual-machine process faithfully recreates
the stream of network packets being sent to the X server.
However, the X server is not under the control of the
replay system and will likely send back different packets
to the virtual machine (e.g. due to different mouse
movements). The packets being sent to the virtual
machine do not affect replay, because the replaying
machine gets its input packets from the log. However,
the TCP protocol at the X server may expect different
replies to the packets it sends to the virtual machine and
may be confused by the virtual machine’s resent pack-
ets. We address this with a simple X proxy on the host
that opens a new TCP connection to the X server. The X
proxy’s goal is to act as a new X client that happens to
send the same display messages to the X server as the
virtual machine did during logging. The X proxy
accomplishes this by receiving the packets being
(re)sent from the replaying virtual machine, stripping
off the Ethernet, IP, and TCP headers from these pack-
ets, reconstituting the X window data stream, and send-
ing the data stream to the X server. Fortunately, the X
protocol is largely deterministic and does not require the
client to reply to messages sent from the X server (the
sole exception is the X authentication protocol, and the
X proxy can be written to navigate through this proto-
col).

5. Experiments

This section validates correctness and quantifies
virtualization and logging overhead for our modified
UMLinux and the ReVirt logging and replay system. All
experiments are run on a computer with a AMD Athlon
1800+ processor, 256 MB of memory, and a Samsung
SV4084 IDE disk. The guest kernel is Linux 2.4.18
ported to UMLinux, and the host kernel for UMLinux is
a modified version of Linux 2.4.18. The virtual machine
is configured to use 192 MB of “physical” memory. The
virtual hard disk is stored on a raw disk partition on the
host to avoid double buffering the virtual disk data in the

guest and host file caches, and to prevent the virtual
machine from benefitting unfairly from the host’s file
cache.

We evaluate our system on five workloads. All
workloads start with a warm guest file cache. POV-Ray
is a CPU-intensive ray-tracing program. We render the
benchmark image from the POV-Ray distribution at
quality 8. kernel-build compiles the complete Linux
2.4.18 kernel (make clean, make dep, make bzImage).
NFS kernel-build is the same as kernel-build with the
kernel stored on an NFS server. SPECweb99 is a bench-
mark that measures web server performance; we use the
2.0.36 Apache web server. We configured SPECweb99
with 15 simultaneous connections spread over two cli-
ents connected to a 100 Mb/s Ethernet switch. Both
workloads exercise the virtual machine intensively by
making many system calls. They are similar to the I/O-
intensive and kernel-intensive workloads used to evalu-
ate Cellular Disco [Govil00]. We also used ReVirt and
UMLinux as the first author’s desktop machine for 24
hours to get an idea of the virtualization and logging
overhead for day-to-day use.

Each result represents the average of three runs
(except for the daily-use test, which represents a single
24-hour period). Variance across runs is less than 3%.

5.1. Virtualization overhead

Our first concern is the time overhead that arises
from running all applications in the UMLinux virtual
machine. We compare running all applications within
UMLinux with running them directly on a host Linux
2.4.18 kernel. The host and guest file systems have the
same versions of all software exercised in the tests
(based on RedHat 6.2).

Table 2 shows the results. UMLinux with our host
optimizations adds very little overhead for compute-
intensive applications such as POV-Ray. We also per-
ceive no overhead when using UMLinux for interactive
jobs such as e-mail, editing, word processing, and web
browsing.

The overheads for SPECweb99, kernel-build, and
NFS kernel-build are higher because they issue more
guest kernel calls, each of which must be trapped by the
VMM kernel module and reflected back to the guest ker-
nel by sending a signal. In addition, kernel-build and
NFS kernel-build cause a large number of guest pro-
cesses to be created, each of which maps its executable
pages on demand. Each demand-mapped page causes a
signal to be delivered to the guest kernel, which must
then ask the host kernel to map the new page.



We believe the overheads for using UMLinux are
low enough to be unnoticeable for normal desktop use.
While overheads are higher for workloads that use the
guest kernel intensively, we believe that even an over-
head of 58% is not prohibitive for sites that value secu-
rity.

For reference, VMware Workstation 3.1 has a nor-
malized runtime of approximately 1.25 for kernel-build,
UMLinux without our modifications to the host kernel
has a normalized running time of 26, and a recent ver-
sion of User-Mode Linux (configured to protect the
guest kernel memory from guest applications) has a nor-
malized runtime of 14. The low overhead of VMware
and its acceptance in production settings indicate that
virtualization can be made fast enough to enable ser-
vices such as ReVirt.

5.2. Validating ReVirt correctness

Our next goal was to verify that the ReVirt system
faithfully replays the exact execution of the original run.
For these runs, we add extensive error checking to alert
us if the replaying run deviated from the original. At
every system call and virtual interrupt, we log all regis-
ter values and the branch_retired counter and ver-
ify that these values are the same during replay. In
addition, ReVirt’s mechanism for replaying interrupts
verifies that the branch count at the interrupted instruc-
tion matches the branch count seen at that instruction
during logging.

We first run two micro-benchmarks in the virtual
machine to verify that virtual interrupts are being
replayed at the same point at which they occurred dur-
ing logging. The first micro-benchmark runs two guest
processes that share an mmap’ed memory region. Each
guest process increments a shared variable 10,000,000
times, prints the resulting value, then repeats. Because
the two guest processes share this variable, the output of

process A depends on how many iterations process B
executed by the time process A prints the value. The
second microbenchmark runs a single process that
increments a variable in an infinite loop. The process
prints the current value when it receives a signal. This
test verifies that the guest kernel re-delivers the signal at
the same point as during logging.

We ran each micro-benchmarks 5 times, and each
time the output during replay matched the original out-
put, and all error checks passed.

We next run a macro-benchmark to verify that
ReVirt faithfully plays back input from external systems
and to exercise the system as a whole for longer periods.
During the macro-benchmark, we boot the computer,
start the GNOME window manager (displaying on a
remote X server), open several interactive terminal win-
dows, and concurrently build two applications (free-
civ and mup) on a remote NFS server. The logging run
of this benchmark generates 15,000,000 system calls
and 55,000 virtual interrupts. ReVirt replayed this run
without any deviation from the original run.

For the other tests used in this paper, we disable
the extra error checking mentioned above. However,
ReVirt always checks that the branch count at the inter-
rupted instruction matches the branch count seen at that
instruction during logging, and we have found this to
detect errors effectively while we were developing
ReVirt.

5.3. Logging and replaying overhead

Next we seek to quantify the space and time over-
head of logging. We do not include the time and space
overhead to checkpoint the system, since we expect a
checkpoint to be amortized over a long period of time
(e.g. a few days). Table 3 shows the time and space
overhead for logging on the POV-Ray, kernel-build, NFS

Table 2: Virtualization overhead. This table shows the overhead caused by running applications in UMLinux. Runtime is
normalized to the runtime when running directly on the host.

Workload UMLinux runtime
(normalized to direct-on-host)

POV-Ray 1.01
kernel-build 1.58

NFS kernel-build 1.44
SPECweb99 1.13

daily use ≈ 1



kernel-build, and SPECweb99 workloads. Logs are
stored in a compressed format using gzip.

Table 3 shows that the time overhead of logging is
small (at most 8%).

The space overhead of logging is small enough to
save the logs over a long period of time at low cost.
Workloads with little non-determinism (e.g. POV-Ray,
kernel-build) generate very little log traffic. Note that
the log data needed to replay local compilations takes
much less space than the disk data generated in compila-
tion.

The log growth rate for NFS kernel-build and
SPECweb99 is higher because of the need to log incom-
ing network packets. However, it is still not prohibitive.
For example, a 120 GB disk can store the volume of log
traffic generated by NFS kernel-build for 3-4 months. If
the file server used ReVirt, using cooperative logging at
the client would reduce the log volume generated by
NFS kernel-build to that of kernel-build.

We also used ReVirt and UMLinux as the first
author’s desktop machine for 24 hours to get an idea of
the virtualization and logging overhead for day-to-day
use4. We experienced no perceptible time overhead rela-
tive to running directly on the host, and the log occupied
0.2 GB after one day.

Table 3 shows that workloads typically replay at
the same speed as they ran during logging. It is possible
to replay a workload faster (sometimes much faster)
than it ran during logging because replay skips over
periods of idle time, such as that encountered during the
non-working hours of the daily use workload.

5.4. Analyzing an attack

Finally, we demonstrate the ability of ReVirt to
help analyze a non-deterministic attack that involves a
kernel-level vulnerability. We re-introduced into our
guest kernel the ptrace race condition that was present in
Linux kernels before 2.2.19 [CER01b]. A villain
exploits this bug by running a setuid process and attach-
ing to it via ptrace. The vulnerability is non-deter-
ministic because it depends on a time-of-check to time-
of-use race condition. The attack is successful only if
the file is not currently in the file cache, and the file
cache state depends on the scheduling order and behav-
ior of prior processes.

We exercised the vulnerability until compromising
the system, then we added a trojan horse to /bin/ls and a
backdoor to /etc/inetd.conf. ReVirt successfully replays
the attack and allows us to find out how the attacker
compromised the system and assess all damage done
after the point of compromise. We were able to stop the
replay after each point in the attack, run guest programs
that examined the system state, and diagnose the method
and effects of the intrusion.

6. Related work

Bressoud and Schneider’s work on hypervisor-
based fault tolerance [Bressoud96] shares several tech-
niques with ReVirt. Bressoud and Schneider use a vir-
tual machine for the PA-RISC architecture to interpose a
software layer between the hardware and an unchanged
operating system, and they log non-determinism to
reconstruct state changes from a primary computer onto
its backup.

While ReVirt shares several mechanisms with
Hypervisor, ReVirt uses them to achieve a different and
new goal. Hypervisor is intended to help tolerate faults

4. This test was run using Linux 2.2.20 as the guest operating
system.

Table 3: Time and space overhead of logging and replay. Logging slowdown shows the overhead caused by logging, relative
to running UMLinux without logging. Log growth rate shows the average rate of growth of the log during the workload. Replay
runtime is normalized to the runtime of UMLinux with logging. Replay runtime values less than 1 indicate that replay ran faster
than logging, due to replay’s ability to skip over periods of idle time.

Workload Runtime with logging (normalized
to UMLinux without logging)

Log growth
rate

Replay runtime (normalized
to UMLinux with logging)

POV-Ray 1.00 0.04 GB/day 1.01
kernel-build 1.08 0.08 GB/day 1.02

NFS kernel-build 1.07 1.2 GB/day 1.03
SPECweb99 1.04 1.4 GB/day 0.88

daily use ≈ 1 0.2 GB/day 0.03



by mirroring the state of a primary computer onto a
backup. ReVirt takes some of the techniques developed
for fault tolerance and applies them to provide a novel
security tool. Specifically, ReVirt is intended to replay
the complete, long-term execution of a computer. To
illustrate the difference between these goals, compare
the usefulness of checkpoints for each goal. Recovering
a backup to a prior point in time can be accomplished
either by checkpointing the primary’s state periodically
or by logging the primary’s operations. On the other
hand, checkpoints are not sufficient for intrusion analy-
sis because they do not show how the system transi-
tioned between checkpoints; checkpoints can only be
used to initialize the replay procedure.

Besides a difference in goals, Hypervisor and
ReVirt also differ in several design choices. Because
Hypervisor only seeks to restore the backup to the last
saved state of the primary, it discards log records after
each synchronization point. In contrast, ReVirt enables
replay over long periods (e.g. months) of the computer’s
execution, so it must save all log records since the last
checkpoint. Another difference is that Hypervisor defers
the delivery of interrupts until the end of a fixed number
of instructions (called an epoch), while ReVirt delivers
interrupts as soon as they occur (or when the guest ker-
nel re-enables interrupts). Hypervisor also logs more
information than ReVirt (e.g. Hypervisor logs disk
reads).

There are several virtual machines that are similar
to UMLinux. User-Mode Linux [Dike00] shares many
of the same goals as UMLinux [Buchacker01]. We
chose UMLinux because the virtual machine is con-
tained in a single host process, whereas User-Mode
Linux uses a separate host process for each guest appli-
cation process (this speeds up context switching
between guest processes). SimOS’s direct-execution
mode is also similar to these systems but is targeted at
an architecture that is easier to virtualize than the x86
[Rosenblum95].

ReVirt shares a similar philosophy of security log-
ging with S4 [Strunk00]. Both ReVirt and S4 add log-
ging below the target operating system to protect the
logging functionality and data from compromised appli-
cations and operating systems. ReVirt adds logging to a
virtual machine, while S4 adds it to disk drives. The log-
ging in ReVirt captures different information than the
logging in S4. ReVirt enables replay of the entire com-
puter’s execution, while S4 logs and replays disk activ-
ity. ReVirt and S4 save different data to the log (ReVirt
saves non-deterministic events, S4 saves disk data), so a

comparison of log volume generated will depend on
workload.

7. Future work
Our near-term work is to make checkpointing

faster and more convenient. We plan to accelerate the
disk copy done during checkpointing using copy-on-
write. We plan to enable the VMM to checkpoint a run-
ning virtual machine by saving and reconstructing the
host-kernel state for the virtual-machine process
[Plank95].

We also plan to build higher-level analysis tools
that leverage ReVirt’s ability to replay detailed, long-
term executions. Whereas current techniques in com-
puter forensics can only analyze the evidence left behind
by careless intruders, ReVirt allows an analyst to watch
any intrusion in arbitrary detail.

Finally, we plan to use ReVirt as a building block
for new security services. ReVirt’s ability to recover to
an arbitrary state may enable us to recover a system
automatically and to analyze or prevent key events in an
attack.

8. Conclusions
ReVirt applies virtual-machine and fault-tolerance

techniques to enable a system administrator to replay
the long-term, instruction-by-instruction execution of a
computer system. Because the target operating system
and target applications run within a virtual machine,
ReVirt can replay the execution before, during, and after
the intruder compromises the system. This capability is
especially useful for determining and fixing the damage
the intruder inflicted after compromising the system.
Because ReVirt logs all non-deterministic events, it can
replay non-deterministic attacks and executions, such as
those that trigger race conditions. Finally, because
ReVirt can replay instruction-by-instruction sequences,
it can provide arbitrarily detailed observations about
what transpired on the system.

ReVirt adds reasonable time and space overhead.
The overhead for virtualization ranges from impercepti-
ble for interactive and CPU-bound applications to 13-
58% for kernel-intensive applications. The time over-
head of logging ranges from 0-8%, and logging traffic
for our workloads can be stored on a single disk for sev-
eral months.
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