
ECS 251: History of OS

Sam King



Administrative



Overview

• Trends and history of OS
• OS architectures
• OS interfaces
• Trends moving forward



History of operating systems

• OS history dominated by two trends
– Expensive hardware becoming cheap
– OS complexity increasing

• OS is simple, library of services, one “thread”
• Poor utilization



Mainframes and single operator

• Goal: just get it 
to work!

• Lots of wasted 
time where 
expensive 
computers idle

http://www.mainframes360.com/2009/06/what-is-mainframe-computer.html



Batch processing



Batch processing

• Goal: improve CPU and I/O utilization
• Solution: Remove human from the pipeline

– Encourages a very different style of programming

• Still only one job at a time
– Batched together to form a type of a pipeline
– Input encoding stage, execution stage, output stage all decoupled

• OS is batch monitor and library of services
• Batch monitor loads, runs programs
• For the first time protection becomes an issue

• Why was protection not an issue for single operator?



Multi-programmed batch
• Goal: improve CPU and I/O utilization
• Solution: overlap disk I/O and CPU

• Allows multiple I/Os to happen simultaneously
• Allows CPU and disk to work simultaneously
• OS getting more complex
– Switch between tasks, manage I/O
– Now, must protect tasks for each other



Time sharing

• Goal: restore ability for humans to interact
• Insight: human is modeled as a (very slow) I/O
• Solution: switch when waiting for human
• OS getting more complex
– Lots of jobs
– Jobs coming from different places

–Mechanisms and policies to cope with users



Personal computing

• Computer hardware cheap
– Single operator at console
– OS reverts to subroutine library
– Do you need time-share between multiple jobs?

– Do you need protection?

• PC operating systems have gradually added 
back in features from time-sharing systems



Today’s computing

• OS are massively complex
– Windows XP kernel had 45M loc

https://www.facebook.com/windows/posts/1557413
44475532

• APIs and practical distributed systems
– E.g., Spanner

• OS abstractions are getting harder to work with
– Mobile devices for security and power saving

https://www.facebook.com/windows/posts/155741344475532


OS architectures



A peek into Unix/Linux

Applications

Libraries (e.g., c runtime)

Portable OS Layer

Machine-dependent layer

User mode

Kernel mode



A peek into Unix/Linux

Applications

Libraries (e.g., c runtime)

Portable OS Layer

Machine-dependent layer

Typical interactions w
system



A peek into Unix/Linux

Applications

Libraries (e.g., c runtime)

Portable OS Layer

Machine-dependent layer

Shared libraries



A peek into Unix/Linux

Applications

Libraries (e.g., c runtime)

Portable OS Layer

Machine-dependent layer

High-level abstractions 
(e.g., file system)



A peek into Unix/Linux

Applications

Libraries (e.g., c runtime)

Portable OS Layer

Machine-dependent layer
Low-level (process 

switch)



OS architectures

• OS developers paranoid
– Buggy software
– Unreliable hardware
– Users cannot be trusted

• OS developers are engineers
– Faster is better



Monolithic operating system

Applications

Libraries (e.g., c runtime)

Portable OS Layer

Machine-dependent layer



Alternative architectures: microkernel

• Protection, but how much?
• At cost of performance?
• Windows NT and Mac OS X have microkernel roots
• More common on embedded systems, might see 

resurgence in the years to come



Alternative architecture: VMM
• VMM is like microkernel with uncreative interface
• But what about performance?
• Today’s VMMs starting to resemble Microkernel

Hardware

VMM

OS

Identical interface



Abstractions and interfaces
• Key abstractions: process and file system
• Key interface: system call



Unix system calls

• Process management
– Fork, exec, wait

• File handle
– Open, read, write

• File namespace
– Readdir, stat, unlink, link, rename



Implement a shell

• Goal: create child process and wait for it to return
• Fork() – return pid of child or 0 if you are the child
• Exec(argv) – replace current process with 

arguments argv
• Wait(pid) – wait for process pid to return



Implement a shell
while(1) {

user_input = display_prompt();
parse_input(user_input, &argv);

}



Process abstraction

• Illusion – infinite number of processes
• Reality – fixed process table sizes, finite 

memory and CPU

• Demo…



Fork bomb

• How can you fix this?

• CS comes from two different backgrounds: 
math and ee
– Is it worth it to fix it?


