
ECS 251

Sam King
Processes and threads: general

concepts

Administrative

• HW 1 is going out today
• Quiz 1 is going to be on Thursday

– Will cover everything in class today
• Cancelling office hours today

Project ideas

• Put the required reading up for this
class (subject to change)

• Suggestion: look for other grad OS
classes that are on the web that list
project ideas!

More on the project
• Expect to do a lot of programming
• Pick a project specific to this class

– Not your research
– Not a project that you’re working on in a separate class

• I’m ok with limited novelty as long as you know that
it’s not novel

• Start sharing ideas with Art and I now for feedback!

Administrative

• Last time – history of OS
• This time – concepts behind processes

and threads
• Next time – cooperating threads

Threads and concurrency

• Motivation
– OSes getting complex
– Multiple users, programs, I/O devices, etc.
– How to mange this complexity?

• Decompose or separate hard problems
into simpler ones

main() {
getInput();
computeResult();
printOutput();

}
getInput() {

cout();
cin();

}
computeResult() {

sqrt();
pow();

}
printOutput() {

cout();
}

Programs decompose into several rows

main

getInput

cout

• Processes decompose mix of activities
running on a processor into several
parallel tasks (columns)

• Each job can work independently of the
others

• Remember, for any area of OS, ask:
– What interface does the hardware provide?
– What interface does the OS provide?

Job 1 Job 2 Job 3

What’s in a process?

• Definition of a process
– (informal) a program in execution. A

running piece of code along with all the
things the program ca read/write

• Note: process != program
– (formal) one of more threads in their own

address space
• Play analogy

• Thread
– Sequence of executing instructions from a

program (i.e., the running computation)
– Active
– Play analogy

• Address space
– All the data in the process uses as it runs
– Passive (acted upon by the thread)
– Play analogy: all the object on the stage in

a play

Types of data in the address spaces
0xffffffff

0x00000000

Code segment

Data segment

Stack segment

Stacks
A(int tmp) {

B();
}
B() {

C();
}
C() {

A(2);
}

Start by calling A(1)

A(tmp=1)

C

A(tmp=2)

B

Multiple threads

• Can have several threads in a single
address space
– Play analogy: several actors on a single

set. Sometimes interact (e.g., dance
together), sometimes do independent tasks

• Private state for a thread vs. global
state shared between threads

• What private state must a thread have?
– <WRITE IN>

• Other state is shared between all
threads in a process

Can threads be independent?

• Is it possible to have multiple threads on
a computer system that don’t cooperate
or interact at all?
– Mail program reads PDF attachment and

starts acrobat to display attachment?

– Running Halo and compiling kernel on a
computer at the same time?

• Two possible sources of sharing

• Correct example of non-interacting
threads

A little bit of history

• Computer systems circa 2000 were
uniprocessor, I/O bound

• Web servers were the research problem
of the day

General flow for handling a
web server request

handleWebRequest() {
socket = newClientConnection(serverSock)
request = readHTTPRequest(socket)
object = accessDatabase(request)
response = accessFilesystem(request)
sendResponse(socket, response)

}

Web server example

• Web server
– Receives multiple simultaneous requests
– Read file from disk to satisfy request

• Handle one request at a time
– Easy to program, slow

• No overlapping disk requests with computation or with
network receive

Request 1 Start disk I/O req 1

Disk I/O ret req 1

Reply to req 1

Request 2

Process req 1Process req 2

Event driven with async I/O

• Need to keep track of pending requests

activeFds.add(serverSock)
handleWebRequest() {

activeFd = select(activeFds)
// giant state machine to track pending
// requests (yuck)
switch (activeFd) {

case serverSock:
// new request

case isHttpRequest(activeFd):
// read request, store state when done

case isDatabaseFd(activeFd):
// handle response from database

…
}

• Event-driven with async I/O
– Need to keep track of outstanding requests

Request 1 Proc req 1
Start I/O 1a

Request 2

Proc req 2
Start I/O 2a

Request 3

Proc req 3
Start I/O 3a

Disk I/O 1a ret

Reply req 1

Web server using threads
• Each thread handles one request

Request 1 Proc req 1
Start I/O 1a

Request 2 Proc req 2
Start I/O 2a

Request 3 Proc req 3
Start I/O 3a

Reply req 1
I/O 1a ret

handleWebRequest() {
while (true) {

socket = newClientConnection(serverSock)
createNewThread(webRequestThread, socket)

}
}

webRequestThread(socket) {
request = readHTTPRequest(socket)
object = accessDatabase(request)
response = accessFilesystem(request)
sendResponse(socket, response)

}

Web server

• Advantages of thread example?

• Advantages of event-driven example?

Benefits and uses of threads
• Thread system in operating system manages

the sharing of the single CPU among several
threads
– Applications get a simpler programming interface

• Typical domains that use multiple threads
– Physical control

• Slow component?
– Window system (1 thread per window)

– Network server

– Parallel programming (for using multiple CPUs)

A new baseline circa 2010

• All computers are multicore
• Many computers are power and CPU

constrained (mobile phones)

• Threads are easier than old style event
driven programming, still have issues
– Race conditions on shared state
– Atomicity violations on shared state
– Not enough or too many threads

Too many threads: combine threads
and event driven programming?

• Build a runtime layer on top of the OS
• What is the underlying interface?

• What abstraction do we want to provide
to applications running above?

