
ECS 251: Cooperating
threads
Sam King

Administrative

• HW 1 out last Tuesday, due on 1/22
• Quiz 1 today

• I’m out of town Thurs next week, TBD
on how we’ll handle it

Project groups due on Tues

• Please make sure that you’ve formed a
group and that you submit your group
name and group members next week

• A few project ideas have come through
via email, happy to provide feedback

Cooperating threads

• How multiple threads can cooperate on
a single task

– Assume for now that we have enough
physical processors for each thread

– Later we’ll discuss how to give this illusion
of infinite physical processors on a single
processor

Ordering of events

• Ordering of events from different
threads is non-deterministic
– Processor speeds may vary
– E.g., after 10 seconds, different thread

have different amounts of work done
Thread A ------------------------------>
Thread B - - - >
Thread C - - - - - - - - - - - - - - - >

Non-determinisim
• Non deterministic ordering produces non

deterministic results

• Printing example
– Thread A: print ABC
– Thread B: print 123
– Possible outputs?

– Impossible outputs? Why or why not?

– What is being shared?

Arithmetic example
• Initially y=10
• Thread A: x = y+1;
• Thread B: y = y*2;

• Possible results?

Atomic operations
• Example

– Thread A: x=1;
– Thread B: x=2;
– Possible results?

– Is 3 a possible output?

Atomic operations

• Before we can reason at all about
cooperating threads, we must know that
some operation is atomic

• Atomic: indivisible. Either happens in its
entirety without interruption, or has yet to
happen at all.
– No events from other threads can happen in

between the start and the end of an atomic event

Example disc.
• In assignment example above, if assignment

to x is atomic, then only possible results are 1
and 2.

• In print example above, what are the possible
output if each print statement is atomic?

• In print example, assuming printing a char
was atomic. What if printing a single char
was not atomic?

Atomicity disc.
• On most machines, memory load and

store are atomic

• But, many instructions are not atomic
– Floating point store on 32-bit machine

• If you don’t have any atomic operations,
you can’t make one
– Fortunately, H/W designers have helped us

out…

Another example
Thread A
i=0
while(i<10) {

i++
}
Print “A finished”

Thread B
i=0
while(i>-10) {

i--
}
Print “B finished”

•Who will win?

•Is it guaranteed that someone will win?

•What if threads run at exactly the same speed and start
close together?

•What if i++ and i-- are not atomic?

I++ I-- not atomic
Tmp (private) = I + 1;
I = Tmp;

(A) TmpA = I + 1 (I.e. 1)
(B) tmpB = I - 1 (I.e. -1)
(A) I = tmpA
(B) I = tmpB

Another example disc. cont.
• Should you worry about this happening?

• Non-deterministic interleaving makes
debugging challenging
– Heisenbug

Synchronizing between
multiple threads

• Must control interleaving between
threads
– Order of some operations irrelevant

• Independent
– Other operations are dependent and order

does matter

• All possible interleaving must yield a
correct answer
– A correct concurrent program will work no

matter how fast the processors are that
execute the various threads

Synchronizing between
multiple threads

• All interleavings result in correct answer

• Try to constrain the thread executions
as little as possible

• Controlling the execution and order of
threads is called “synchronization”

Too much milk

• Problem definition
– Sam and Anne want to keep refrigerator

stocked with at most one milk jug
– If either sees fridge empty, she/he goes to

buy milk
– Correctness properties:

• Someone will buy milk if needed
• Never more than one person buys milk

Solution #0 (no sync)
Sam:
if(noMilk) {

buy milk
}

Anne:
if(noMilk) {

buy milk
}

Sam Anne
3:00 look in fridge

(no milk)
3:05 go to Safeway
3:10 look in fridge (no milk)
3:15 buy milk
3:20 go to Safeway
3:25 arrive home, add milk
3:30 buy milk
3:35 arrive home, add milk

Too Much Milk!

Mutual exclusion
• Ensure that only 1 thread is doing a certain

thing at one time
– Only one person goes shopping at one time

• Critical section
– A section of code that needs to run atomically

w.r.t. other code
– If code A and code B are critical sections w.r.t.

each other
• Threads cannot interleave events from A and B

– Critical sections must be atomic w.r.t. each other
• Share data (or other resourced, e.g., screen, fridge)

• What is the critical section in solution #0?

Too much milk (solution #1)

Sam:
if (noNote) {

leave note
if (noMilk) {

buy milk
}
remove note

}

Anne:
if (noNote) {

leave note
if (noMilk) {

buy milk
}
remove note

}

•Assume only atomic operations are load and store

•Idea: leave note that going to check on milk status

•Does this work? If not, when could it fail?

•Is solution #1 better than solution #0?

Too much milk (solution #2)

Sam:
leave noteSam
if (no noteAnne) {

if(noMilk) {
buy milk

}
}
remove noteSam

Anne:
Leave noteAnne
if (no noteSam) {

if(noMilk) {
buy milk

}
}
remove noteAnne

•Idea: change the order of “leave note” and “check
note”.

•Labeled notes

Solution #2 disc.

• Does solution #2 work? If not, when
could it fail?

Too much milk (solution #3)

Sam:
leave noteSam
while (noteAnne) {

do nothing
}
if (noMilk) {

buy milk
}
remove noteSam

Anne:
leave noteAnne

if (no noteSam) {
if(noMilk) {

buy milk
}

}
remove noteAnne

•Idea: have a way to decide who will buy milk when both
leave notes at the same time. Have Sam hang around
to make sure job is done.

Too much milk (solution #3)

• Sam’s “while(noteAnne)” prevents him from
running his critical section at the same time
as Anne’s

• Proof of correctness
– “Exercise to the reader”

• Correct, but ugly
– Complicated
– Asymmetric
– Inefficient

• Sam consumes CPU time while waiting (Busy Waiting)

