
ECS 251: Thread
synchronization

Sam King

Administrative

• Project groups due today
• Project ideas due on Thursday

Administrative

• Quizzes moving to Tuesdays to line up
more closely with the homework

• Cancel class on Thursday
– Art will have extra office hours

Administrative

• Last time: Too Much Milk using atomic
loads and stores

• This time: Locks
• Next time: Condition variables, lock

implementation

Too much milk (solution #3)

Sam:
leave noteSam
while (noteAnne) {

do nothing
}
if (noMilk) {

buy milk
}
remove noteSam

Anne:
leave noteAnne

if (no noteSam) {
if(noMilk) {

buy milk
}

}
remove noteAnne

•Idea: have a way to decide who will buy milk when both
leave notes at the same time. Have Sam hang around
to make sure job is done.

Too much milk (solution #3)

• Sam’s “while(noteAnne)” prevents him from
running his critical section at the same time
as Anne’s

• Proof of correctness
– “Exercise to the reader”

• Correct, but ugly
– Complicated
– Asymmetric
– Inefficient

• Sam consumes CPU time while waiting (Busy Waiting)

Higher-level synchronization
• Problem: could solve “too much milk” using

atomic loads/stores, but messy

• Solution: raise the level of abstraction to
make life easier for the programmer

Concurrent programs

High-level synchronization
provided by software

Low-level atomic operations
provided by hardware

Locks (mutexes)
• A lock is used to prevent another thread from

entering a critical section
• Two operations

– Lock(): wait until lock is free, then acquire

do {
if (lock == LOCK_FREE) {

lock = LOCK_SET
break

}
} while(1)

– Unlock(): lock = LOCK_FREE

Locks (mutexes)
• Why was the “note” in Too Much Milk

solutions #1 and #2 not a good lock?

• For elements of locking
– Lock is initialized to be free

– Acquire lock before entering a critical section
– Wait to acquire lock if another thread already

holds
– Release lock after exiting critical section

• All synchronization involves waiting

• Thread can be running, or blocked (waiting)

Locks

• Locks -- shared variable among all thread
• Multiple threads share locks

– Only affects threads that try to acquire locks
– Like putting a padlock on the fridge

Lock variables
• Critical section -- part of the program where

threads access shared (global) state

• Locks -- shared variables used to enforce
mutual exclusion
– Can have multiple lock variables

Locks (mutexes)
• Locks make “Too Much Milk” really easy

to solve!

Sam:
Lock(fridgeLock)
If (noMilk) {

buy milk
}
Unlock(fridgeLock)

Anne:
Lock(fridgeLock)
If (noMilk) {

buy milk
}
Unlock(fridgeLock)

•Correct, but inefficient

•How to minimize the time the lock is held?

Too Much Milk Solution
• Does the following solution work

lock()
if(noMilk && noNote) {

leave note “I’m buying milk”
unlock()
buy milk
remove note

} else {
unlock()

}

Too Much Milk Solution
• Does the following solution work

lock()
if(noMilk && noNote) {

leave note “I’m buying milk”
unlock()
buy milk
lock()
remove note
unlock()

} else {
unlock()

}

Thread-safe queue w / locks

enqueue() {

// find tail of queue
for(ptr=head; ptr->next != NULL;

ptr = ptr->next)
;

// add new element to tail
ptr->next = new_element
new_element->next = NULL

}

Thread-safe queue w / locks
dequeue() {

element = NULL;
// if something on queue, remove it
if(head->next != NULL) {

element = head->next;
head->next = head->next->next;

}
return element;

}
What bad things can happen if two threads manipulate
the queue at the same time?

enqueue() {
lock(queueLock);
// find tail of queue
for(ptr=head; ptr->next

!= NULL;
ptr = ptr->next)
;

// add new element
ptr->next = new_element
new_element->next =

NULL
unlock(queueLock);

}

dequeue() {
lock(queueLock);
element = NULL;
if(head->next != NULL){

element =
head->next;

head->next =
head->next->next;

}
unlock(queueLock);
return element;

}

Invariants for multi-threaded queue
• Can enqueue() unlock anywhere?

• Stable state called an invarient
– I.e., something that is “always” true

• Is the invariant ever allowed to be false?

Invariants for multi-threaded queue

• In general, must hold lock when manipulating
shared data

• What if you’re only reading shared data?

Enqueue
• What about the following locking scheme:
Enqueue() {

lock
find tail of queue
unlock

lock
add new element to tail of queue
unlock

}

• What if you wanted to have dequeue()
wait if the queue is empty?

• Could spin in a loop
Dequeue() {

…
while(head->next == NULL)

;
…

}

• Could release the lock before spinning

unlock();
while(head->next == NULL)

;

Too Much Milk Solution
• Does the following solution work

lock()
If(noNote && noMilk) {

leave note “I’m buying milk”
unlock()
buy milk
remove note

} else {
unlock()

}

enqueue() {
lock(queueLock);
// find tail of queue
for(ptr=head; ptr->next

!= NULL;
ptr = ptr->next)
;

// add new element
ptr->next = new_element
new_element->next =

NULL
unlock(queueLock);

}

dequeue() {
lock(queueLock);
element = NULL;
while(head->next ==

NULL) {
unlock(queueLock);
lock(queueLock);

}
element = head->next;
head->next =

head->next->next;

unlock(queueLock);
return element;

}

• Busy waiting is inefficient, instead you would
like to “go to sleep”
– Waiting list shared between enq and deq
– Must release locks before going to sleep

dequeue() {
…
if(queue is empty) {

release lock
add to wait list
go to sleep

}
}

enqueue() {
lock
find tail
add new element
if(waiting deq) {

rem deq from wait
wake up deq

}
unlock

}

Does this work?

• What if we release lock after adding
dequeuer to waiting list, but before
going to sleep

if(queue is empty) {
add myself to waiting list
release lock
go to sleep and wait

}

Does this work?

Two types of synchronization
• Mutual exclusion

– Only one thread can do a certain operation at one
time (e.g., only one person goes shopping at a
time)

– Symmetric
• Ordering constraints

– Mutual exclusion does not care about order
– Are situations where ordering of thread operations

matter
• E.g., before and after relationships

– Asymmetric

