
ECS 251: Monitors

Sam King

Administrative

• Please don’t copy solutions from the
internet, especially if you don’t cite
– If we catch you, you will get an F for this

class and I will turn you in to the academic
integrity people

Administrative

• HW2 due today
• HW3 due in one week

Administrative

• How we’re going to handle the rest of
the quarter
– Lecture time will be for group meetings
– Discussion time will be for quizzes on the

advanced reading
– I will also talk about research, the papers,

technical topics, etc

Administrative

• Project proposals due on 2/7, first big
milestone for the project

• We’ll talk about it in more detail on Thursday
• It’s going to be a bit challenging because we

haven’t been reading papers, but I’m
assuming that you have been reading papers
in other classes

• Suggestion: read papers from this class
ahead of time and try to reverse engineer the
outline of the introduction

Administrative

• Updating grading, now have 6 quizzes,
no sprint planning and lowered the
points for your final presentation

enqueue() {
lock(queueLock);
// find tail of queue
for(ptr=head; ptr->next

!= NULL;
ptr = ptr->next)
;

// add new element
ptr->next = new_element
new_element->next =

NULL
unlock(queueLock);

}

dequeue() {
lock(queueLock);
element = NULL;
while(head->next ==

NULL) {
unlock(queueLock);
lock(queueLock);

}
element = head->next;
head->next =

head->next->next;

unlock(queueLock);
return element;

}

• Busy waiting is inefficient, instead you would
like to “go to sleep”
– Waiting list shared between enq and deq
– Must release locks before going to sleep

dequeue() {
…
if(queue is empty) {

release lock
add to wait list
go to sleep

}
}

enqueue() {
lock
find tail
add new element
if(waiting deq) {

rem deq from wait
wake up deq

}
unlock

}

Does this work?

• What if we release lock after adding
dequeuer to waiting list, but before
going to sleep

if(queue is empty) {
add myself to waiting list
release lock
go to sleep and wait

}

Does this work?

Two types of synchronization
• Mutual exclusion

– Only one thread can do a certain operation at one
time (e.g., only one person goes shopping at a
time)

– Symmetric
• Ordering constraints

– Mutual exclusion does not care about order
– Are situations where ordering of thread operations

matter
• E.g., before and after relationships

– Asymmetric

Monitors

• Monitors use separate mechanisms for the
two types of synchronization
– Use locks for mutual exclusion
– Use condition variables for ordering const.

• A monitor = a lock + the condition variables
associated with that lock

Condition variables

• Main idea: let threads sleep inside critical
section by atomically
– Releasing lock
– Putting thread on wait queue and go to sleep
– Each cond var has a queue of waiting threads

• Do you need to worry about threads on
the wait queue, but not asleep?

Operations on cond. variables

• Wait(): atomically release lock, put thread on
condition wait queue, go to sleep
– release lock
– Go to sleep
– Re-acquire lock

• Signal(): wake up a thread waiting on this condition
variable

• Broadcast(): wake up all threads waiting on this
condition variable

• Note: thread must hold lock when calls wait()
• Should thread re-establish the invariant before calling

wait? How about signal?

Condition variables

• J Crew shirt example

Thread-safe queue w/monitors

enqueue() {
lock(queueLock)
find tail
add elem to tail

signal(queueLock,
queueCond)

unlock(queueLock)
}

dequeue() {
lock(queueLock)

if(queue empty) {
wait(queueLock,

queueCond)
}

remove from queue
unlock(queueLock)
return item

}

Multi threaded queue
• Note: natural to hold lock when calling wait

– Also natural (but not required) to hold it when
signaling

• Is there any problem with the “if” in the
dequeue()?

Multi threaded queue
• Note: natural to hold lock when calling wait

– Also natural (but not required) to hold it when
signaling

• Is there any problem with the “if” in the
dequeue()?
– Must reason about wait properly:

• Release lock
• Sleep and wait for wakeup
• Re-acquire lock

lockQueue

condQueue

lockOwner

Thread 1 Thread 2 Thread 3

lockQueue

condQueue

lockOwner

Thread 1 (deq) Thread 2 Thread 3

lock

Thread 1

if(queue empty)

lockQueue

condQueue

lockOwner

Thread 1 (deq) Thread 2 Thread 3

lock

Thread 1

if(queue empty)
wait

lockQueue

condQueue

lockOwner

Thread 1 (deq) Thread 2 (enq) Thread 3

lock

Thread 1

if(queue empty)
wait

lock

add item

Thread 2

lockQueue

condQueue

lockOwner

Thread 1 (deq) Thread 2 (enq) Thread 3

lock

if(queue empty)
wait

lock

add item

Thread 2

signal

lockQueue

condQueue

lockOwner

Thread 1 (deq) Thread 2 (enq) Thread 3

lock

if(queue empty)
wait

lock

add item
signal

unlock

lockQueue

condQueue

lockOwner

Thread 1 (deq) Thread 2 (enq) Thread 3 (deq)

lock

if(queue empty)
wait

lock

add item
signal

unlock

lock

Thread 3

remove item

Thread 1

lockQueue

condQueue

lockOwner

Thread 1 (deq) Thread 2 (enq) Thread 3 (deq)

lock

if(queue empty)
wait

lock

add item
signal

unlock

lock

Thread 1

remove item

unlock

lockQueue

condQueue

lockOwner

Thread 1 (deq) Thread 2 (enq) Thread 3 (deq)

lock

if(queue empty)
wait

lock

add item
signal

unlock

lock

Thread 1

remove item

unlockremove item (bug)

Tips for prog. w/ monitors
• List the shared data needed to solve the

problem

• Decide which locks will protect which data
– More locks allows different data to be accessed

simultaneously, more complicated
– One lock usually enough in this class

• Put lock…unlock calls around the code that
uses shared data

Tips for prog. w/ monitors
• List ordering constraints

– One condition variable per constraint
– Condition variable’s lock should be the lock that

protects the shared data used to eval condition
• Call wait() when thread needs to wait for a

condition to be true
– Use a while loop

• Call signal when a condition changes
• Make sure invariant is established whenever

lock is not held
– E.g., before you call wait

Producer-consumer (bounded buffer)
• Problem: producer puts things into a shared

buffer, consumer takes them out.
– Synchronization for coordinating

– Unix pipeline (gcc calls cpp | cc1 | cc2 | as)
– Buffer between allows them to operate

independently
– What would execution be like without buffer?

• Coke machine
– Delivery person (producer)
– Students (and professors) buy cokes (consumer)
– Coke machine has finite space

producer -> -> consumer

Producer-consumer using monitors

• Operations

– Add coke to machine

– Take coke out of machine

• Variables

– Shared data for the coke machine

• Assume can hold “max” (maxCokes) cokes

– numCokes (number of cokes in machine)

• One lock (cokeLock) to protect shared data

– Fewer locks easier to program, less concur.

• Ordering constraints

– Consumer must wait for producer to fill buffer if all buffers

are empty (hasCoke)

– Producer must wait for consumer to empty buffer if buffer is

completely full (hasRoom)

consumer() {
lock(cokeLock);

take one coke out
of machine

unlock(cokeLock)
}

producer(){
lock(cokeLock)

add one coke to
machine

unlock(cokeLock)
}

consumer() {
lock(cokeLock);

while(numCokes = 0)
{

wait(cokeLock,
hasCoke)

}

take coke out
of machine

signal(hasRoom)

unlock(cokeLock)
}

producer(){
lock(cokeLock)

while(numCokes = max)
{

wait(cokeLock,
hasRoom);

}

add coke to
machine

signal(hasCoke)

unlock(cokeLock)
}

• What if we wanted to have producer continuously
loop?

Producer() {

lock(cokeLock);
while(1) {

while(numCokes == max) {
wait(cokeLock, hasRoom);

}
add coke to machine
signal(hasCoke);

}
unlock(cokeLock);

}

• What if we added a sleep?

Producer() {

lock(cokeLock);
while(1) {

sleep(1 hour);
while(numCokes == max) {

wait(cokeLock, hasRoom);
}
add coke to machine
signal(hasCoke);

}
unlock(cokeLock);

}

consumer() {
lock(cokeLock);

while(numCokes = 0)
{

wait(cokeLock,
hasCokeRoom)

}

take coke out
of machine

signal(hasCokeRoom)

unlock(cokeLock)
}

producer(){
lock(cokeLock)

while(numCokes = max)
{

wait(cokeLock,
hasCokeRoom);

}

add coke to
machine

signal(hasCokeRoom)

unlock(cokeLock)
}

• Multiple conditions for a single condition
variable is probably a bad idea
– Hard to reason about changes in conditions mean

• Can we always use broadcast() instead of
signal()?

