
CS 251: Thread
Implementation

Sam King

Administrative

• Emphasis for the next quiz is on
condition variables and monitors

Writing an intro

• Many different ways to do this
– Usually do intro and related work at the

same time
– Amount of related work at beginning is a

tradeoff

Four to five main sections of an intro

• (1-2 par) What problem are you solving and why is it
important. You need to have citations to backup
claims of importance!

• (1-2 par) How other people solve this problem and
why they fall short

• (1 par, optional) What is hard about this problem
• (1-2 par) How you solve it and why your approach is

better
• (1 par) Summarize results (these will be anticipated

results for the proposal)

Proposal == intro + a plan

• Intro -- the bulk of your grade and time
• Want you to start thinking about what this

research will take
– Timeline of what you plan to accomplish,

decompose project into smaller tasks
– Anticipated results
– Evaluation plan

• Your proposal must have: intro, timeline,
anticipated results, and eval plan.

Proposal grading: expect scrutiny

• I’m not going to regrade or allow
resubmissions, please spend time on
getting this right the first time

Proposal
• Similar to the intro of a paper, but some key

differences
– Intro -- usually write after you know the results. Proposal,

write ahead of time
– Can sometimes write ahead of time

• Proposal is more like the intro for a grant proposal
– Have to show that you have a good problem and that you

understand the area
– Speculating on the work that needs to be done, judged on

having a reasonable guess

• Must use LaTeX template that we provide!!!

Proposal hints
• Think big, propose something bold

– Have a well thought out contingency plan
• Most of your time will be spent on the first 2-4

paragraphs
– Understand and motivate the problem

• Citations!!!!

– Understand the problem space and where you fit
• Classify other approaches

– Related work that you read but doesn’t fit in the intro forms
your related work section

Writing hints

• Good topic sentences
• Careful use of emphasis (e.g., lists,

italics)
• Don’t cite anything from Wikipedia!!!!

– You will get an automatic 0 if you do
– Do use wikipedia to help find the primary

source

Thread impl. on uni-proc.
• So far, we’ve been assuming that we have

enough physical process to run each thread
on its own processor
– But threads are useful also for running when you

have more threads than CPUs (web server
example)

– How to give the illusion of infinite physical
processors on a finite set of processors?

Ready threads
• What to do with thread while it’s not running

– Must save private state somewhere
– What constitutes private data for a thread?

CPU

Inactive threads

Thread context

• This information is called the thread “context”
and is stored in a “thread control block” when
the thread isn’t running
– To save space, share code among all threads
– To save space, don’t copy stack to the thread

control block.
• Multiple stacks in same address space, copy stack

pointer in thread control block

Thread context

• Keep thread control blocks for threads
that aren’t running on a queue of ready
threads
– Thread state can now be running, ready, or

blocked

Thread states

Running

Ready Blocked

Switching threads

• Steps to switch to another thread
– Thread returns control to the OS
– Choose new thread to run
– Save state of current thread
– Load context of the next thread
– Run thread

Returning control to the OS

• Come up with a list of ways for a thread
to switch to the OS

Returning control to OS
• How does thread return control back to

the OS (so system can save state of
current thread and run new one)?

Returning control to OS
• Is it enough to depend on internal

events?

Choosing the next thread to run

• If no ready thread, just loop idly
– Loop switches to a thread when one is

ready
• If 1 ready thread, run it
• If more than 1 ready, choose one

– FIFO
– Priority queue

Context switching

• A thread is a sequence of instructions
• What do you do with a thread when it is

not running?

pc
regs

sp

pc
regs

sp

pc
regs

sp

pc
regs

sp

TCB T1 TCB T2 TCB T3 CPU T4

Context switching

• A thread is a sequence of instructions
• What do you do with a thread when it is

not running?

pc
regs

sp

pc
regs

sp

pc
regs

sp

pc
regs

sp

TCB T1 TCB T2 TCB T4 CPU T3

Saving state of current thread

• How to save state of the current thread?
– Save registers, PC, stack pointer
– Very tricky assembly-language code
– Why won’t the following code work?

100 save PC (I.e. value 100)
101 switch to next thread

Loading context of new thread
• How to load the context of the next thread to run and

run it?
– Registers?
– Stack?
– Resume execution?

• Who is running these steps?

• How does the thread that just gave up control run
again?

Example of thread switching
Thread 1

print “start thread 1”
yield()
print “end thread 1”

Thread 2
print “start thread 2”
yield()
print “end thread 2”

Yield
print “start yield (thread %d)”
switch to next thread
print “end yield (current thread %d)

Thread switching in Linux

• PCB == TCB conceptually
• Thread switching is the same as

Process switching except that the
address space stays the same

• Details of switching function, any thread
that switches must do so through this
function

Thread switching in Linux

• When executing in kernel, executing on
behalf of a thread
– Kernel stack key to this abstraction on x86

• Contains local state (stack) and process struct
• E.g., current pointer

– Other architectures use different
techniques

switch_to(task_struct *prev_p,
task_struct *next_p)

x86 assembly overview (32 bit)

• Movl src, dst
• Pushl reg
• Pushfl – push eflags
• Jump imm
• Popl reg
• Popfl – pop eflags

• Eax – gp reg
• Ebx – gp reg
• Ecx – gp reg
• Edx – gp reg
• …
• Ebp – frame pointer
• Eip -- PC
• Esp – stack pointer

Thread switching in xv6
void swtch(struct context **old, struct context *new);
#
Save current register context in old
and then load register context from new
swtch:
Save old registers
movl 4(%esp), %eax # put old ptr into eax
popl 0(%eax) # save the old IP
movl %esp, 4(%eax) # and stack
movl %ebx, 8(%eax) # and other registers
movl %ecx, 12(%eax)
movl %edx, 16(%eax)
movl %esi, 20(%eax)
movl %edi, 24(%eax)
movl %ebp, 28(%eax)

Thread switching in xv6
Load new registers
movl 4(%esp), %eax # put new ptr into eax
movl 28(%eax), %ebp # restore other registers
movl 24(%eax), %edi
movl 20(%eax), %esi
movl 16(%eax), %edx
movl 12(%eax), %ecx
movl 8(%eax), %ebx
movl 4(%eax), %esp # stack is switched here
pushl 0(%eax) # return addr put in place
ret # finally return into new ctxt

