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Administrative

• Emphasis for the next quiz is on 
condition variables and monitors



Writing an intro

• Many different ways to do this
– Usually do intro and related work at the 

same time
– Amount of related work at beginning is a 

tradeoff



Four to five main sections of an intro

• (1-2 par) What problem are you solving and why is it 
important. You need to have citations to backup 
claims of importance!

• (1-2 par) How other people solve this problem and 
why they fall short

• (1 par, optional) What is hard about this problem
• (1-2 par) How you solve it and why your approach is 

better
• (1 par) Summarize results (these will be anticipated

results for the proposal)



Proposal == intro + a plan

• Intro -- the bulk of your grade and time
• Want you to start thinking about what this 

research will take
– Timeline of what you plan to accomplish, 

decompose project into smaller tasks
– Anticipated results
– Evaluation plan

• Your proposal must have: intro, timeline, 
anticipated results, and eval plan.



Proposal grading: expect scrutiny

• I’m not going to regrade or allow 
resubmissions, please spend time on 
getting this right the first time



Proposal
• Similar to the intro of a paper, but some key 

differences
– Intro -- usually write after you know the results. Proposal, 

write ahead of time
– Can sometimes write ahead of time

• Proposal is more like the intro for a grant proposal
– Have to show that you have a good problem and that you 

understand the area
– Speculating on the work that needs to be done, judged on 

having a reasonable guess

• Must use LaTeX template that we provide!!!



Proposal hints
• Think big, propose something bold

– Have a well thought out contingency plan
• Most of your time will be spent on the first 2-4 

paragraphs
– Understand and motivate the problem

• Citations!!!!

– Understand the problem space and where you fit
• Classify other approaches

– Related work that you read but doesn’t fit in the intro forms 
your related work section



Writing hints

• Good topic sentences
• Careful use of emphasis (e.g., lists, 

italics)
• Don’t cite anything from Wikipedia!!!!

– You will get an automatic 0 if you do
– Do use wikipedia to help find the primary 

source



Thread impl. on uni-proc.
• So far, we’ve been assuming that we have 

enough physical process to run each thread 
on its own processor
– But threads are useful also for running when you 

have more threads than CPUs (web server 
example)

– How to give the illusion of infinite physical 
processors on a finite set of processors?



Ready threads
• What to do with thread while it’s not running

– Must save private state somewhere
– What constitutes private data for a  thread?

CPU

Inactive threads



Thread context

• This information is called the thread “context” 
and is stored in a “thread control block” when 
the thread isn’t running
– To save space, share code among all threads
– To save space, don’t copy stack to the thread 

control block.
• Multiple stacks in same address space, copy stack 

pointer in thread control block



Thread context

• Keep thread control blocks for threads 
that aren’t running on a queue of ready
threads
– Thread state can now be running, ready, or 

blocked



Thread states

Running

Ready Blocked



Switching threads

• Steps to switch to another thread
– Thread returns control to the OS
– Choose new thread to run
– Save state of current thread
– Load context of the next thread
– Run thread



Returning control to the OS

• Come up with a list of ways for a thread 
to switch to the OS



Returning control to OS
• How does thread return control back to 

the OS (so system can save state of 
current thread and run new one)?



Returning control to OS
• Is it enough to depend on internal 

events?



Choosing the next thread to run

• If no ready thread, just loop idly
– Loop switches to a thread when one is 

ready
• If 1 ready thread, run it
• If more than 1 ready, choose one

– FIFO
– Priority queue



Context switching

• A thread is a sequence of instructions
• What do you do with a thread when it is 

not running?
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Context switching

• A thread is a sequence of instructions
• What do you do with a thread when it is 

not running?
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Saving state of current thread

• How to save state of the current thread?
– Save registers, PC, stack pointer
– Very tricky assembly-language code
– Why won’t the following code work?

100 save PC (I.e. value 100)
101 switch to next thread



Loading context of new thread
• How to load the context of the next thread to run and 

run it?
– Registers?
– Stack?
– Resume execution?

• Who is running these steps?

• How does the thread that just gave up control run 
again?



Example of thread switching
Thread 1

print “start thread 1”
yield()
print “end thread 1”

Thread 2
print “start thread 2”
yield()
print “end thread 2”

Yield
print “start yield (thread %d)”
switch to next thread
print “end yield (current thread %d)



Thread switching in Linux

• PCB == TCB conceptually
• Thread switching is the same as 

Process switching except that the 
address space stays the same

• Details of switching function, any thread 
that switches must do so through this 
function



Thread switching in Linux

• When executing in kernel, executing on 
behalf of a thread
– Kernel stack key to this abstraction on x86

• Contains local state (stack) and process struct
• E.g., current pointer

– Other architectures use different 
techniques

switch_to(task_struct *prev_p,
task_struct *next_p)



x86 assembly overview (32 bit)

• Movl src, dst
• Pushl reg
• Pushfl – push eflags
• Jump imm
• Popl reg
• Popfl – pop eflags

• Eax – gp reg
• Ebx – gp reg
• Ecx – gp reg
• Edx – gp reg
• …
• Ebp – frame pointer
• Eip -- PC
• Esp – stack pointer



Thread switching in xv6
# void swtch(struct context **old, struct context *new);
#
# Save current register context in old
# and then load register context from new
swtch:
# Save old registers
movl 4(%esp), %eax # put old ptr into eax
popl 0(%eax) # save the old IP
movl %esp, 4(%eax) # and stack
movl %ebx, 8(%eax) # and other registers
movl %ecx, 12(%eax)
movl %edx, 16(%eax)
movl %esi, 20(%eax)
movl %edi, 24(%eax)
movl %ebp, 28(%eax)



Thread switching in xv6
# Load new registers
movl 4(%esp), %eax # put new ptr into eax
movl 28(%eax), %ebp # restore other registers
movl 24(%eax), %edi
movl 20(%eax), %esi
movl 16(%eax), %edx
movl 12(%eax), %ecx
movl 8(%eax), %ebx
movl 4(%eax), %esp # stack is switched here
pushl 0(%eax) # return addr put in place
ret # finally return into new ctxt


