
Administrative

• No class on Thursday
– Start reading papers

• Proposals due on Saturday
• Not going to discuss virtual memory or

address translation. Use the textbook if you
aren’t familiar with these topics

• How to read a paper
• How to think about the discussions

Second half class structure

• 15 minutes on quiz
• 15 minutes on background /

presentation
• 15 minutes on discussion

In class discussion
• Transition to reading / discussing papers

• Three default questions:
– What did you like about the paper?
– What did you dislike about the paper?
– What future work did this inspire?

• Other questions designed to spark a discussion
– Most papers are accepted / rejected based on opinions,

rarely because of facts
– This class will hopefully help you learn how your classmates

think

Thread switching in xv6

• When executing in kernel, executing on
behalf of a thread
– Kernel stack key to this abstraction on x86

• Contains local state (stack) and process struct
• E.g., current pointer

swtch(struct context *old,
struct context *new)

x86 assembly overview (32 bit)

• Movl src, dst
• Pushl reg
• Pushfl – push eflags
• Jump imm
• Popl reg
• Popfl – pop eflags

• Eax – gp reg
• Ebx – gp reg
• Ecx – gp reg
• Edx – gp reg
• …
• Ebp – frame pointer
• Eip -- PC
• Esp – stack pointer

Thread switching in xv6
void swtch(struct context *old, struct context *new);
#
Save current register context in old
and then load register context from new
swtch:
Save old registers
movl 4(%esp), %eax # put old ptr into eax
popl 0(%eax) # save the old IP
movl %esp, 4(%eax) # and stack
movl %ebx, 8(%eax) # and other registers
movl %ecx, 12(%eax)
movl %edx, 16(%eax)
movl %esi, 20(%eax)
movl %edi, 24(%eax)
movl %ebp, 28(%eax)

Thread switching in xv6
Load new registers
movl 4(%esp), %eax # put new ptr into eax
movl 28(%eax), %ebp # restore other registers
movl 24(%eax), %edi
movl 20(%eax), %esi
movl 16(%eax), %edx
movl 12(%eax), %ecx
movl 8(%eax), %ebx
movl 4(%eax), %esp # stack is switched here
pushl 0(%eax) # return addr put in place
ret # finally return into new ctxt

